【題目】已知函數(shù),且時(shí),總有成立.

a的值;

判斷并證明函數(shù)的單調(diào)性;

上的值域.

【答案】12函數(shù)R上的減函數(shù)(3)

【解析】試題分析: 根據(jù)條件建立方程關(guān)系即可求a的值;

根據(jù)函數(shù)單調(diào)性的定義判斷并證明函數(shù)的單調(diào)性;

結(jié)合函數(shù)奇偶性和單調(diào)性的定義即可求上的值域.

試題解析:

, ,

,

函數(shù)R上的減函數(shù),

的定義域?yàn)?/span>R,

任取,且,

.

函數(shù)R上的減函數(shù).

知,函數(shù)上的為減函數(shù),

,

即函數(shù)的值域?yàn)?/span>.

點(diǎn)晴:證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差: ,并將此式變形(要注意變形到能判斷整個(gè)式子符號(hào)為止);(3)定號(hào):判斷的正負(fù)(要注意說(shuō)理的充分性),必要時(shí)要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=2 sin ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】德國(guó)數(shù)學(xué)家科拉茨1937年提出一個(gè)著名的猜想:任給一個(gè)正整數(shù) ,如果 是偶數(shù),就將它減半(即 );如果 是奇數(shù),則將它乘3加1(即 ),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明。也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù) (首項(xiàng))按照上述規(guī)則旅行變換后的第9項(xiàng)為1(注:1可以多次出現(xiàn)),則 的所有不同值的個(gè)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠A,B,C的對(duì)邊分別為, , ,若,

(1)求∠B的大;

(2), ,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長(zhǎng)12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分),以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界線符合函數(shù)y=x+ (x>0)模型,園區(qū)服務(wù)中心P在x軸正半軸上,PO= 百米.
(1)若在點(diǎn)O和景觀湖邊界曲線上一點(diǎn)M之間修建一條休閑長(zhǎng)廊OM,求OM的最短長(zhǎng)度;
(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道PQ最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號(hào)召,王老師每個(gè)工作日上下班由自駕車(chē)改為選擇乘坐地鐵或騎共享單車(chē)這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車(chē)的概率是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車(chē)單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.
(I)求X的分布列和數(shù)學(xué)期望
(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請(qǐng)判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說(shuō)明理由.
原則:設(shè) 表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若 ,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn}是等比數(shù)列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令Cn= 設(shè)數(shù)列{cn}的前n項(xiàng)和Tn , 求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條件 ;條件 :直線 與圓 相切,則 的( )
A.充分必要條件
B.必要不充分條件
C.充分不必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某港口水的深度y(m)是時(shí)間t(0≤t≤24,單位:h)的函數(shù),記作y=f(t).下面是某日水深的數(shù)據(jù):

t/h

0

3

6

9

12

15

18

21

24

y/m

10

13

10

7

10

13

10

7

10

經(jīng)長(zhǎng)期觀察,y=f(t)的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時(shí),船底離海底的距離為5m或5m以上時(shí)認(rèn)為是安全的(船舶?繒r(shí),船底只需不碰海底即可).

(1)求y與t滿足的函數(shù)關(guān)系式;

(2)某船吃水深度(船底離水面的距離)為6.5m,如果該船希望在同—天內(nèi)安全進(jìn)出港,請(qǐng)問(wèn)該船在什么時(shí)間段能夠安全進(jìn)港?它同一天內(nèi)最多能在港內(nèi)停留多少小時(shí)?(忽略進(jìn) 出港所需的時(shí)間).

查看答案和解析>>

同步練習(xí)冊(cè)答案