將長(zhǎng)和寬分別為6和4的矩形卷成一個(gè)圓柱,則該圓柱的體積為
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:空間位置關(guān)系與距離
分析:我們可以分圓柱的底面周長(zhǎng)為4,高為6和圓柱的底面周長(zhǎng)為6,高為4,兩種情況進(jìn)行討論,最后綜合討論結(jié)果,即可得到答案.
解答: 解:若圓柱的底面周長(zhǎng)為4,則底面半徑R=
2
π
,h=6,
此時(shí)圓柱的體積V=π•R2•h=
24
π
,
若圓柱的底面周長(zhǎng)為6,則底面半徑R=
3
π
,h=4,
此時(shí)圓柱的體積V=π•R2•h=
36
π
,
∴圓錐的體積為:
24
π
36
π

故答案為:
24
π
36
π
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是圓柱的體積,其中根據(jù)已知條件分別確定圓柱的底面周長(zhǎng)和高是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(1)=1,f(x)=
f(x-1)+x,x為奇數(shù)
f(x-1)+2x,x為偶數(shù)
(x=2,3,…),m∈N+,則f(2m)=( 。
A、2m+1
B、
11
2
m-6
C、
5,m=1
4m2-3m+6,m≠1
D、3m2+2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(2sin(x+
π
3
),-1),
b
=(2cosx,
3
),設(shè)函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期
(2)若2f(x)-m+1=0在[0,
4
]內(nèi)有兩個(gè)相異的實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正四棱錐P-ABCD中,PA=
3
2
AB
,M是BC的中點(diǎn),G是△PAD的重心,則在平面PAD中經(jīng)過(guò)點(diǎn)G且與直線PM垂直的直線條數(shù)有( 。
A、0條B、1條C、3條D、無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)球從100m的高處自由落下,每次著地后又跳回到原高度的一半在落下,編寫(xiě)程序,求當(dāng)它第10次著地時(shí)
(1)向下的運(yùn)動(dòng)共經(jīng)過(guò)多少米?
(2)第10次著地后反彈多高?
(3)全程共經(jīng)過(guò)多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果cosx=|cosx|,那么角x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的三角形ABC繞AB邊旋轉(zhuǎn)一周的幾何體的主視圖如圖所示,則該旋轉(zhuǎn)體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列an=
1+(-1)n
2
的前5項(xiàng)之和是( 。
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α終邊上一點(diǎn)的坐標(biāo)是(sin
π
5
,cos
π
5
),則角α的值是( 。
A、
π
5
B、
π
5
+2kπ(k∈Z)
C、
10
+2kπ(k∈Z)
D、(-1)k
10
+kπ(k∈Z)

查看答案和解析>>

同步練習(xí)冊(cè)答案