如圖,在平面直角坐標系中,以軸為始邊作兩個銳角,它們的終邊分別交單位圓于兩點.已知兩點的橫坐標分別是,

(1)求的值;(2)求的值.

(1)(2)

解析試題分析:由題意,得,
(1)根據(jù)三角函數(shù)的定義可得,
(2)由(1)得
 ,
,
.
考點:本小題主要考查三角函數(shù)的定義和兩角和的正切公式的應用.
點評:三角函數(shù)的定義是求解三角函數(shù)問題的基礎,一定要準確掌握,另外,三角函數(shù)中公式比較
多,要靈活應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知直線經(jīng)過拋物線的焦點F,且與拋物線相交于A、B兩點.

(1)若,求點A的坐標;
(2)若直線的傾斜角為,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設拋物線,為焦點,為準線,準線與軸交點為
(1)求;
(2)過點的直線與拋物線交于兩點,直線與拋物線交于點.
①設三點的橫坐標分別為,計算:的值;
②若直線與拋物線交于點,求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點不是左、右頂點),且以為直徑的圓經(jīng)過橢圓C的右頂點A.   求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題14分)
已知橢圓)過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標原點),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的方程為,點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標;
(2)設直線交橢圓、兩點,交直線于點.若,證明:的中點;
(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點、滿足,寫出求作點的步驟,并求出使存在的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設點到直線的距離與它到定點的距離之比為,并記點的軌跡為曲線
(Ⅰ)求曲線的方程;
(Ⅱ)設,過點的直線與曲線相交于兩點,當線段的中點落在由四點構成的四邊形內(nèi)(包括邊界)時,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓)的離心率為,過右焦點且斜率為1的直線交橢圓兩點,為弦的中點。
(1)求直線為坐標原點)的斜率;
(2)設橢圓上任意一點,且,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)設直線與橢圓相交于兩個不同的點,與軸相交于點,記為坐標原點.
(1)證明:
(2)若的面積及橢圓方程.

查看答案和解析>>

同步練習冊答案