[2012·陜西高考]如圖所示,在空間直角坐標(biāo)系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為(  )

A. B. C. D.

 

A

【解析】不妨令CB=1,則CA=CC1=2.

可得O(0,0,0),B(0,0,1),C1(0,2,0),A(2,0,0),B1(0,2,1),

=(0,2,-1),=(-2,2,1),

∴cos〈,〉=>0.

的夾角即為直線BC1與直線AB1的夾角,

∴直線BC1與直線AB1夾角的余弦值為.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-2命題及其關(guān)系、充分條件與必要條件(解析版) 題型:選擇題

若非空集合A,B,C滿足A∪B=C,且B不是A的子集,則(  )

A.“x∈C”是“x∈A”的充分不必要條件

B.“x∈C”是“x∈A”的必要不充分條件

C.“x∈C”是“x∈A”的充要條件

D.“x∈C”既不是“x∈A”的充分條件也不是“x∈A”的必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-6雙曲線(解析版) 題型:選擇題

[2014·大同模擬]設(shè)雙曲線=1(a>0)的漸近線方程為3x±2y=0,則a的值為(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-2直線的交點(diǎn)坐標(biāo)與距離公式(解析版) 題型:填空題

[2013·撫順模擬]若直線x-2y+5=0與直線2x+my-6=0互相垂直,則實(shí)數(shù)m=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:選擇題

[2014·長(zhǎng)春三校調(diào)研]一次函數(shù)y=-x+的圖象同時(shí)經(jīng)過(guò)第一、三、四象限的必要不充分條件是(  )

A.m>1,且n<1 B.mn<0

C.m>0,且n<0 D.m<0,且n<0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-6空間向量及運(yùn)算(解析版) 題型:選擇題

[2013·重慶診測(cè)]若向量a=(1,λ,2),b=(2,-1,2),且a與b的夾角余弦值為,則λ等于(  )

A.2 B.-2 C.-2或 D.2或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:填空題

[2014·長(zhǎng)春質(zhì)檢]如圖,四棱錐P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點(diǎn),則BE與平面PAD的位置關(guān)系為_(kāi)_______.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:選擇題

[2013·寧波質(zhì)檢]如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)均為2,且側(cè)棱AA1⊥平面A1B1C1,正視圖是正方形,俯視圖是正三角形,該三棱柱的側(cè)視圖面積為(  )

A.2 B. C.2 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:5-4數(shù)列求和(解析版) 題型:選擇題

[2014·江南十校聯(lián)考]已知函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(4,2),令an=,n∈N*.記數(shù)列{an}的前n項(xiàng)和為Sn,則S2013=(  )

A.-1 B.-1

C.-1 D.+1

 

查看答案和解析>>

同步練習(xí)冊(cè)答案