如圖,正三角形ABC外接圓的半徑為1,點M、N分別是邊AB、AC的中點,延長MN與△ABC的外接圓交于點P,求線段NP的長.

 

 

【解析】設正三角形ABC的邊長為x,由正弦定理,得=2,所以x=.延長PN交圓于Q,則NA·NC=NP·NQ.設NP=t,則t·.所以t=,即NP=

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-4第2課時練習卷(解析版) 題型:解答題

設x、y∈R,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-2第2課時練習卷(解析版) 題型:解答題

已知M=,β=,計算M5β.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-2第1課時練習卷(解析版) 題型:解答題

已知M=,N=,向量α=.

(1)驗證:(MN)α=M(Nα);

(2)驗證這兩個矩陣不滿足MN=NM.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-2第1課時練習卷(解析版) 題型:解答題

求曲線y=在矩陣作用下變換所得的圖形對應的曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-1第2課時練習卷(解析版) 題型:解答題

如圖,在△ABC中,∠C=90°,∠A=60°,AB=20,過C作△ABC的外接圓的切線CD,BD⊥CD,BD與外接圓交于點E,求DE的長.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-1第2課時練習卷(解析版) 題型:解答題

如圖所示,圓O的兩弦AB和CD交于點E,EF∥CB,EF交AD的延長線于點F,F(xiàn)G切圓O于點G.

(1)求證:△DEF∽△EFA;

(2)如果FG=1,求EF的長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-1第1課時練習卷(解析版) 題型:解答題

已知:如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求證:AE·BF·AB=CD3.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第5課時練習卷(解析版) 題型:填空題

已知關于x的二次函數(shù)f(x)=ax2-4bx+1.設集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4},分別從集合P和Q中任取一個數(shù)作為a和b的值,則函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率為________.

 

查看答案和解析>>

同步練習冊答案