【題目】已知函數(shù),.
(1)若,當(dāng)時(shí),證明:;
(2)若當(dāng)時(shí),,求的取值范圍.
【答案】(1)證明見解析;(2).
【解析】
(1)由,可得.令,利用導(dǎo)數(shù)求出函數(shù)的單調(diào)性求出函數(shù)的最小值為,可得,所以在上單調(diào)遞增,據(jù)此即可證明結(jié)果.
(2).令,,可得.令,,,,所以在上單調(diào)遞增,
所以,即,對(duì)進(jìn)行分類討論,根據(jù)函數(shù)的性質(zhì)即可求出結(jié)果.
(1),,,.
令,.
當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增,
的最小值為,所以,即,
所以在上單調(diào)遞增,所以,故.
(2).
令,,
.
令,,,,所以在上單調(diào)遞增,
所以,即.
①當(dāng),即時(shí),,在上單調(diào)遞增,所以滿足條件.
②當(dāng),即時(shí),,顯然不滿足條件.
③當(dāng),即時(shí),若,,
令,,,,
故存在,使時(shí),,即在上單調(diào)遞減,所以,
即,,故不滿足條件.
綜上,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方體的棱的中點(diǎn),下列命題中真命題是( )
A.過點(diǎn)有且只有一條直線與直線都相交
B.過點(diǎn)有且只有一條直線與直線都垂直
C.過點(diǎn)有且只有一個(gè)平面與直線都相交
D.過點(diǎn)有且只有一個(gè)平面與直線都平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是等邊三角形,,,為三棱錐外一點(diǎn),且為等邊三角形.
證明:;
若平面平面,平面與平面所成銳二面角的余弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年3月22日是第二十八屆“世界水日”3月22-28日是第三十三屆“中國(guó)水周”,主題為“堅(jiān)持節(jié)水優(yōu)先,建設(shè)幸福河湖”,效仿階梯電價(jià),某市準(zhǔn)備實(shí)施階梯水價(jià).階梯水價(jià)原則上以一套住宅(一套住宅為一戶)的月用水量為基準(zhǔn),具體劃分階梯如下:
梯類 | 第一階梯 | 第二階梯 | 第三階梯 |
月用水量范圍(立方米) |
從本市居民用戶中隨機(jī)抽取10戶,并統(tǒng)計(jì)了在同一個(gè)月份的月用水量,得到如圖所示的莖葉圖
(1)若從這10戶中任意抽取三戶,求取到第二階梯用戶數(shù)的分布列和數(shù)學(xué)期望;
(2)用以上樣本估計(jì)全市的居民用水情況,現(xiàn)從全市隨機(jī)抽取10戶,則抽到多少戶為第二階梯用戶的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一點(diǎn),過點(diǎn)作軸的垂線交軸于點(diǎn),點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形為等腰梯形,為正方形,平面平面,,.
(1)求證:平面平面;
(2)點(diǎn)為線段上一動(dòng)點(diǎn),求與平面所成角正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點(diǎn),是拋物線上一點(diǎn),過點(diǎn)作拋物線的切線,與橢圓交于,兩點(diǎn).
(1)求橢圓的方程;
(2)若直線平分弦,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求實(shí)數(shù)a的值;
(2)若函數(shù)有2個(gè)不同的零點(diǎn),.
①求實(shí)數(shù)a的取值范圍;
②求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com