己知函數(shù)f(x)=x2+bx的圖象在點A(1,f(1))處的切線l與直線3x-y=0平行,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2015的值為
 
考點:數(shù)列的求和,二次函數(shù)的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由已知得f′(1)=2+b=3,從而b=1,進(jìn)而
1
f(n)
=
1
n(n+1)
=
1
n
-
1
n+1
,由此得到Sn=
n
n+1
,從而能求出S2015
解答: 解:∵函數(shù)f(x)=x2+bx的圖象在點A(1,f(1))處的切線l與直線3x-y=0平行,
∴f′(x)=2x+b,f′(1)=2+b=3,解得b=1,
1
f(n)
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
,
∴S2015=
2015
2016

故答案為:
2015
2016
點評:本題考查數(shù)列的前2015項和的求法,是中檔題,解題時要認(rèn)真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,DE⊥平面ABCD.
(1)求證:AC⊥平面BDE;
(2)若AF∥DE,DE=3AF,點M在線段BD上,且BM=
1
3
BD,求證:AM∥平面 BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在坐標(biāo)平面內(nèi)橫縱坐標(biāo)均為整數(shù)的點稱為格點.現(xiàn)有一只螞蟻從坐標(biāo)平面的原點出發(fā),按如下線路沿順時針方向爬過格點:O→A1(1,0)→A2(1,-1)→A3(0,-1)→A4(-1,-1)→A5(-1,0)→A6(-1,1))→A7(0,1)→A8(1,1)→A9(2,1)→…→A12(2,-2)→…→A16(-2,-2)→…→A20(3,2)→…,則螞蟻在爬行過程中經(jīng)過的第350個格點A350坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sinxcos(x+
π
6
)+1
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC,角A,B,C的對邊分別為a,b,c,若f(A)=2,a=3,S△ABC=
3
,求b2+c2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ-N(2,σ2),若P(ξ>4)=0.4,則P(ξ>0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(
an
,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.?dāng)?shù)列{bn}滿足b1=1,bn+1=bn+2an
(1)求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=an•bn,求{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R).
(1)若a=0,當(dāng)x∈[
1
2
,1]時恒有f(x)≥0,求b的取值范圍;
(2)若a≠0且b=-1,試在直角坐標(biāo)平面內(nèi)找出橫坐標(biāo)不同的兩個點,使得函數(shù)y=f(x)的圖象永遠(yuǎn)不經(jīng)過這兩點;
(3)當(dāng)a2+b2=1時,函數(shù)y=f(x)存在零點x0,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z2=5-12i,則f(z)=z-
1
z
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“同域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個“同城區(qū)間”.給出下列四個函數(shù):
①f(x)=cos
π
2
x;②f(x)=x2-1;③f(x)=|x2-1|;④f(x)=log2(x-1).
存在“同域區(qū)間”的“同域函數(shù)”的序號是
 
(請寫出所有正確的序號)

查看答案和解析>>

同步練習(xí)冊答案