(本題14分)如圖,五面體,.底面是正三角形,四邊形是矩形二面角為直二面角.
(1)上運動,當在何處時,有∥平面,并且說明理由;
(2)當∥平面時,求二面角余弦值.
(Ⅰ)略  (Ⅱ)  
(Ⅰ)當中點時,有∥平面.…1分 

證明:連結(jié)連結(jié)
∵四邊形是矩形 ∴中點
∥平面,且平面,
平面, ----5分
的中點. --6分
(Ⅱ)建立空間直角坐標系圖所示,
,,,
, ------------8分
所以
設(shè)為平面的法向量,
則有,

,可得平面的一個
法向量為,              ----------------11分
而平面的法向量為,   ---------------------------12
所以,
所以二面角余弦值--------14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直三棱柱中,,點N是的中點,求二面角的平面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正三棱錐的一個側(cè)面的面積與底面積之比為2∶3,則這個三棱錐的側(cè)面和底面所成二面角的度數(shù)為_________. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設(shè)D、E是△ABC的邊AB上的兩點,已知∠ACD=∠BCE,AC=14,AD=7,AB=28,CE=12.求BC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在直棱柱中,,,AA1=2,E、F分別是AC、AB的中點,過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為,則截面的面積為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,點E、M分別為A1B、C1C的中點,過點A1,B,M三點的平面A1BMN交C1D1于點N.
(Ⅰ)求證:EM∥平面A1B1C1D1
(Ⅱ)求二面角B—A1N—B1的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(理)如圖,已知正三棱柱ABC-A1B1C1的各條棱長都相等,M是側(cè)棱CC1的中點,則異面直線AB1和BM所成的角的大小是( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

記動點P是棱長為1的正方體ABCD-A1B1C1D1的對角線BD1上一點,記
D1P
D1B
.當∠APC為鈍角時,則λ的取值范圍為( 。
A.(0,1)B.(
1
3
,1)
C.(0,
1
3
)
D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,正方體ABCD-A1B1C1D1中,AA1=2,E為棱CC1上的點,則B1D1與AE所成的角( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習冊答案