【題目】已知公差不為0的等差數(shù)列{an},其前n項和為Sn,若S10100,a1a2,a5成等比數(shù)列.

1)求{an}的通項公式;

2bnanan+1+an+an+1+1,求數(shù)列的前n項和Tn

【答案】(1) an2n1;(2) Tn

【解析】

1)設(shè)公差d不為0的等差數(shù)列{an},運用等比數(shù)列的中項性質(zhì)和等差數(shù)列的通項公式和求和公式,解方程可得首項和公差,進(jìn)而得到所求通項公式;

2)求得bn4nn+1),),運用數(shù)列的裂項相消求和,化簡即可得到所求和.

1)公差d不為0的等差數(shù)列{an},其前n項和為Sn

S10100,a1,a2,a5成等比數(shù)列,則10a1+45d100,

a22a1a5

即(a1+d2a1a1+4d),

解得a11d2,

an2n1

2bnanan+1+an+an+1+1

=(2n1)(2n+1+2n1+2n+1+1

4nn+1),

),

則前n項和Tn11

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有5名男生和3名女生站成一排照相,

13名女生站在一起,有多少種不同的站法?

23名女生次序一定,但不一定相鄰,有多少種不同的站法?

33名女生不站在排頭和排尾,也互不相鄰,有多少種不同的站法?

43名女生中,A,B要相鄰,A,C不相鄰,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點Aa,3),圓C:(x12+y224

1)設(shè)a4,求過點A且與圓C相切的直線方程;

2)設(shè)a3,直線l過點A且被圓C截得的弦長為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關(guān)注“兩會”,某機構(gòu)隨機抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區(qū)間[15,35)和[35,75]內(nèi)的人分別稱為“青少年人”和“中老年人”.經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)之比為19:21.其中“青少年人”中有40人關(guān)注“兩會”,“中老年人”中關(guān)注“兩會”和不關(guān)注“兩會”的人數(shù)之比是2:1.

(Ⅰ)求圖中的值;

(Ⅱ)現(xiàn)采用分層抽樣在[25,35)和[45,55)中隨機抽取8名代表,從8人中任選2人,求2人中至少有1個是“中老年人”的概率是多少?

(Ⅲ)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)此統(tǒng)計結(jié)果判斷:能否有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會”?

關(guān)注

不關(guān)注

合計

青少年人

中老年人

合計

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關(guān)注“兩會”,某機構(gòu)隨機抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區(qū)間[15,35)和[35,75]內(nèi)的人分別稱為“青少年人”和“中老年人”.經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)之比為19:21.其中“青少年人”中有40人關(guān)注“兩會”,“中老年人”中關(guān)注“兩會”和不關(guān)注“兩會”的人數(shù)之比是2:1.

(Ⅰ)求圖中的值;

(Ⅱ)現(xiàn)采用分層抽樣在[25,35)和[45,55)中隨機抽取8名代表,從8人中任選2人,求2人中至少有1個是“中老年人”的概率是多少?

(Ⅲ)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)此統(tǒng)計結(jié)果判斷:能否有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會”?

關(guān)注

不關(guān)注

合計

青少年人

中老年人

合計

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,定義橢圓的“相關(guān)圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構(gòu)成直角三角形.

(1)求橢圓的方程和“相關(guān)圓”的方程;

(2)過“相關(guān)圓”上任意一點的直線與橢圓交于兩點.為坐標(biāo)原點,若,證明原點到直線的距離是定值,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若函數(shù)圖像在點處的切線斜率為時,求的值,并求此時函數(shù)的單調(diào)區(qū)間;

2)若,為函數(shù)的兩個不同極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過定點,且與直線相切,圓心C的軌跡為E,曲線E與直線l()相交于A,B兩點.

1)求曲線E的方程;

2)當(dāng)的面積等于時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為雙曲線的左、右焦點,M為雙曲線右支上一點且滿足,若直線與雙曲線的另一個交點為N,則的面積為__________.

查看答案和解析>>

同步練習(xí)冊答案