【題目】已知點(diǎn)Aa,3),圓C:(x12+y224

1)設(shè)a4,求過點(diǎn)A且與圓C相切的直線方程;

2)設(shè)a3,直線l過點(diǎn)A且被圓C截得的弦長為,求直線l的方程.

【答案】(1) yx4+3;(2) yx6yx+2

【解析】

1)設(shè)過A的直線為ykx4+3,利用d2計(jì)算得到答案.

2)設(shè)直線l的方程為ykx3+3,利用圓心到l的距離d解得答案.

1a4時,設(shè)過A的直線為ykx4+3,則圓C的圓心(12)到直線的距離d2,解得k

所以過點(diǎn)A且與圓相切的直線方程為:yx4+3;

2a3時,設(shè)直線l的方程為ykx3+3,則圓心到l的距離d,解得k1,

所以直線l的方程為yx6,或yx+2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知p:函數(shù)fx)在R上是增函數(shù),fm2)<fm+2)成立;q:方程1mR)表示雙曲線.

1)若p為真命題,求m的取值范圍;

2)若pq為真,pq為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線的方程為,.

(1)若在兩坐標(biāo)軸上的截距相等,求的方程;

(2)若與兩坐標(biāo)軸圍成的三角形的面積為6,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的邊長為,將沿對角線折起,使平面平面,得到如圖所示的三棱錐,若邊的中點(diǎn),分別為上的動點(diǎn)(不包括端點(diǎn)),且,設(shè),則三棱錐的體積取得最大值時,三棱錐的內(nèi)切球的半徑為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足:對任意的nN*,都有an+1+Sn+11,又a1

1)求數(shù)列{an}的通項(xiàng)公式;

2)令bnlog2an,求nN*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)y=f(f(x)﹣a)﹣1有三個零點(diǎn),則a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,函數(shù)是否存在零點(diǎn)?如果存在,求出零點(diǎn);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an},其前n項(xiàng)和為Sn,若S10100,a1,a2a5成等比數(shù)列.

1)求{an}的通項(xiàng)公式;

2bnanan+1+an+an+1+1,求數(shù)列的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,底面為正方形的四棱錐PABCD中,AB=2PA=4,PB=PD=ACBD相交于點(diǎn)O,EPD中點(diǎn).

(1)求證:EO//平面PBC

(2)設(shè)線段BC上點(diǎn)F滿足CF=2BF,求銳二面角EOFC的余弦值.

查看答案和解析>>

同步練習(xí)冊答案