【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為(
A.
B.
C.
D.

【答案】D
【解析】解:設A(x1 , y1),B(x2 , y2), 代入橢圓方程得
相減得

∵x1+x2=2,y1+y2=﹣2, = =

化為a2=2b2 , 又c=3= ,解得a2=18,b2=9.
∴橢圓E的方程為
故選D.
設A(x1 , y1),B(x2 , y2),代入橢圓方程得 ,利用“點差法”可得 .利用中點坐標公式可得x1+x2=2,y1+y2=﹣2,利用斜率計算公式可得 = = .于是得到 ,化為a2=2b2 , 再利用c=3= ,即可解得a2 , b2 . 進而得到橢圓的方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知⊙O1與⊙O2相交于A、B兩點,過點A作⊙O1的切線交⊙O2于點C,過點B作兩圓的割線,分別交⊙O1、⊙O2于點D、E,DE與AC相交于點P. (Ⅰ)求證:AD∥EC;
(Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習俗,設一盤中裝有10個粽子,其中豆沙粽2個,肉粽3個,白粽5個,這三種粽子的外觀完全相同,從中任意選取3個. (Ⅰ)求三種粽子各取到1個的概率;
(Ⅱ)設X表示取到的豆沙粽個數(shù),求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點,

的值;

的平分線交線段AB于點D,求點D的坐標;

在單位圓上是否存在點C,使得?若存在,請求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某種藥物在血液中以每小時的比例衰減,現(xiàn)給某病人靜脈注射了該藥物2500mg,設經(jīng)過x個小時后,藥物在病人血液中的量為ymg

x的關系式為______;

當該藥物在病人血液中的量保持在1500mg以上,才有療效;而低于500mg,病人就有危險,要使病人沒有危險,再次注射該藥物的時間不能超過______小時精確到

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求的單調(diào)區(qū)間;

(Ⅱ)當時,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,點E在棱PB上,且PE=2EB. (Ⅰ)求證:平面PAB⊥平面PCB;
(Ⅱ)求證:PD∥平面EAC;
(Ⅲ)求平面AEC和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移 個單位后得到的圖象關于原點對稱,則函數(shù)f(x)的圖象(
A.關于直線x= 對稱
B.關于直線x= 對稱
C.關于點( ,0)對稱
D.關于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)上為增函數(shù),求正實數(shù)的取值范圍;

(Ⅱ)若關于的方程在區(qū)間內(nèi)恰有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案