【題目】在平面直角坐標系xOy中,已知點

的值;

的平分線交線段AB于點D,求點D的坐標;

在單位圓上是否存在點C,使得?若存在,請求出點C的坐標;若不存在,請說明理由.

【答案】(1)63; (2); (3單位圓上存在點,滿足題意.

【解析】

(1)分別表示出,即可求出;(2)設點,由平行可得到,再由,得到,即可求出的值,進而得到答案;(3)假設單位圓上存在點滿足條件,用向量的坐標表示出,結合,即可求出點C的坐標。

(1)因為,

所以

(2)設點,則,

因為點在線段上,

所以,即有,化簡得, ①

再設

因為,

同理,

可知,化簡得, ②

由①②解得,,即點的坐標為.

(3)假設單位圓上存在點滿足條件,

;

時,,即,

又因為,所以,

可知.

所以,當為第二象限角時,;

為第四象限角時,.

綜上所述,單位圓上存在點,滿足題意。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,中點,且平面,為線段上一動點,記

(1)當時,求異面直線所成角的余弦值;

(2)當與平面所成角的正弦值為時,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設不等式x2+y2≤4確定的平面區(qū)域為U,|x|+|y|≤1確定的平面區(qū)域為V.
(1)定義橫、縱坐標為整數(shù)的點為“整點”,在區(qū)域U內任取3個整點,求這些整點中恰有2個整點在區(qū)域V的概率;
(2)在區(qū)域U內任取3個點,記這3個點在區(qū)域V的個數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐P﹣ABC中.側梭長均為4.底邊AC=4.AB=2,BC=2 ,D.E分別為PC.BC的中點. 〔I)求證:平面PAC⊥平面ABC.
(Ⅱ)求三棱錐P﹣ABC的體積;
(Ⅲ)求二面角C﹣AD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨機抽取該流水線上的件產(chǎn)品作為樣本,稱出它們的重量(單位:克),重量的分組區(qū)間為,…,,由此得到樣本的頻率分布方圖,如圖所示.

(1)在上述抽取的件產(chǎn)品中任取件,設為取到重量超過克的產(chǎn)品件數(shù),求的概率;

(2)從上述件產(chǎn)品中任取件,設為取到重量超過克的產(chǎn)品件數(shù),求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“傻子瓜子”是著名瓜子品牌,蕪湖特產(chǎn)之一.屯溪一中組織高二年級赴蕪湖方特進 行研學活動,開拓視野,甲、乙兩名同學在活動結束之余準備赴商場購買一定量的傻子瓜子.為了讓本次研學活動具有實際意義,兩名同學經(jīng)過了解得知系列的瓜子不僅便宜而且口味還不錯,并且每日的銷售量(單位:千克)與銷售價格(元/千克)滿足關系式:,其中,為常數(shù).已知銷售價格為5元/千克時,每日可售出系列瓜子11千克.若系列瓜子的成本為3元/千克,試確定銷售價格的值,使該商場每日銷售系列瓜子所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某鎮(zhèn)在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足 .設甲合作社的投入為(單位:萬元).兩個合作社的總收益為(單位:萬元).

(1)當甲合作社的投入為25萬元時,求兩個合作社的總收益;

(2)試問如何安排甲、乙兩個合作的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C過點,且與圓M關于直線對稱.

求圓C的方程;

過點P作兩條相異直線分別與圓C相交于點A和點B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OPAB是否平行?請說明理由.

查看答案和解析>>

同步練習冊答案