【題目】在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,
已知某圓的極坐標方程為: .
(1)將極坐標方程化為直角坐標方程;
(2)若點 在該圓上,求的最大值和最小值.
科目:高中數學 來源: 題型:
【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點.
(1)若甲乙都以每分鐘的速度從點出發(fā)在各自的大道上奔走,到大道的另一端
時即停,乙比甲遲2分鐘出發(fā),當乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設,乙丙之間的距離是甲乙之間距離的2倍,且,請將甲
乙之間的距離表示為θ的函數,并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,甲船以每小時 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里,當甲船航行20分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距 海里,問乙船每小時航行多少海里?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列{an}的前n項和為Sn , 數列{an}滿足,2Sn=an(an+1).
(1)求數列{an}的通項公式;
(2)設數列{ }的前n項和為An , 求證:對任意正整數n,都有An< 成立;
(3)數列{bn}滿足bn=( )nan , 它的前n項和為Tn , 若存在正整數n,使得不等式(﹣2)n﹣1λ<Tn+ ﹣2n﹣1成立,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線, 分別與軸交于點, .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經過定點?若經過,求出定點的坐標;若不經過,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為D,滿足:①f(x)在D內是單調函數;②存在[ ]D,使得f(x)在[ ]上的值域為[a,b],那么就稱函數y=f(x)為“優(yōu)美函數”,若函數f(x)=logc(cx﹣t)(c>0,c≠1)是“優(yōu)美函數”,則t的取值范圍為( )
A.(0,1)
B.(0, )
C.(﹣∞, )
D.(0, )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com