3.某連鎖經(jīng)營(yíng)公司的5個(gè)零售店某月的銷售額和利潤(rùn)額資料如表:
 商店名稱
 銷售額(x)/千萬(wàn)元 3 5 6 7 9
 利潤(rùn)(y)/百萬(wàn)元 2 3 3 4 5
(1)若銷售額和利潤(rùn)額具有線性相關(guān)關(guān)系,用最小乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程;
(2)若商店F此月的銷售額為1億1千萬(wàn)元,試用(1)中求得的回歸方程,估測(cè)其利潤(rùn).(精確到百萬(wàn)元)

分析 (1)根據(jù)所給的表格做出橫標(biāo)和縱標(biāo)的平均數(shù),求出利用最小二乘法要用的結(jié)果,做出線性回歸方程的系數(shù),寫(xiě)出線性回歸方程.
(2)將x=11代入線性回歸方程中得到y(tǒng)的一個(gè)預(yù)報(bào)值,可得答案.

解答 解:(1)由題意得$\overline{x}$=6,$\overline{y}$=3.4,
$\sum _{i=1}^{5}$xiyi=112,$\sum _{i=1}^{5}$xi2=200,
∴$\hat$=$\frac{112-5×6×3.4}{200-5×6×6}$=0.5,
$\hat{a}$=3.4-0.5×6=0.4,
則線性回歸方程為$\hat{y}$=0.5x+0.4,
(2)將x=11代入線性回歸方程中得:
$\hat{y}$=0.5×11+0.4=5.9≈6(百萬(wàn)元).

點(diǎn)評(píng) 本題考查線性回歸方程,考查用線性回歸方程預(yù)報(bào)y的值,這種題目是新課標(biāo)中出現(xiàn)的知識(shí)點(diǎn),并且已經(jīng)作為高考題目在廣東省出現(xiàn)過(guò),注意這種題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.化簡(jiǎn)$\sqrt{\frac{1-sinα}{1+sinα}}+\sqrt{\frac{1+sinα}{1-sinα}}$,其中sinα•tanα<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)寫(xiě)出函數(shù)f(x)的最小正周期及其單調(diào)遞減區(qū)間;
(2)求f(x)的解析式;
(3)若將函數(shù)f(x)的圖象平移Φ個(gè)單位,得到一個(gè)偶函數(shù)的圖象,求|Φ|的最小值;
(4)求函數(shù)y=f(x-3)+f(2x+7)(x∈[0,2])的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=1+ax-2(a>0,且a≠1)恒過(guò)定點(diǎn)(2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)f(x)和g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在[a,b]上有2個(gè)不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=-x2+(m+2)x-1和g(x)=2x+3是[1,5]上的“關(guān)聯(lián)函數(shù)”,則實(shí)數(shù)m的取值范圍為(4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)在(-∞,0)∪(0,+∞)上既是偶函數(shù),又在(0,+∞)上單調(diào)遞增的是(  )
A.y=-x2B.y=x-1C.y=log2|x|D.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}+2co{s}^{2}\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知實(shí)數(shù)1,m,4構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的離心率為$\frac{\sqrt{2}}{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.計(jì)算:
(1)(2$\frac{7}{9}$)0.5+0.5-2+(2$\frac{10}{27}$)${\;}^{-\frac{1}{3}}$-3π0+$\frac{37}{48}$
(2)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log29•log278.

查看答案和解析>>

同步練習(xí)冊(cè)答案