拋物線在點           處的切線平行于直線。

(2,4)

解析試題分析:設(shè)切點坐標(biāo)為,因為切線平行于直線,所以
考點:本小題主要考查導(dǎo)數(shù)的幾何意義.
點評:求曲線的切線,首先想到的應(yīng)該是利用導(dǎo)數(shù)求切線的斜率,當(dāng)不知道切點坐標(biāo)時,先設(shè)出切點再求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

以雙曲線:的右焦點為圓心,并與其漸近線相切的圓的標(biāo)準(zhǔn)方程是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知焦點在x軸上的雙曲線的漸近線方程為y= ±,則此雙曲線的離心率為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知F是拋物線的焦點, A、B是拋物線上兩點,若是正三角形,則 的邊長為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,平面中兩條直線l 1 l 2相交于點O,對于平面上任意一點M,若x , y分別是M到直線l1l2的距離,則稱有序非負(fù)實數(shù)對(x , y)是點M的“距離坐標(biāo) ” 。
已知常數(shù)p≥0, q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且只有1個;
②若pq="0," 且p+q≠0,則“距離坐標(biāo)”為( p, q) 的點有且只有2個;
③ 若pq≠0則“距離坐標(biāo)”為 ( p, q) 的點有且只有4個.
上述命題中,正確命題的是           .(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,已知橢圓的左、右準(zhǔn)線分別為,且分別交軸于兩點,從上一點發(fā)出一條光線經(jīng)過橢圓的左焦點軸反射后與交于點,若,且,則橢圓的離心率等于        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線的準(zhǔn)線與雙曲線相切,則雙曲線的離心率        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線到拋物線的準(zhǔn)線距離為d1,到直線的距離為d2,則d1+d2的最小值是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

拋物線的準(zhǔn)線與軸交于點,點在拋物線對稱軸上,過可作直線交拋物線于點,使得,則的取值范圍是       .

查看答案和解析>>

同步練習(xí)冊答案