【題目】如圖,已知二面角α-MN-β的大小為60°,菱形ABCD在平面β內(nèi),A,B兩點(diǎn)在棱MN上,∠BAD=60°,E是AB的中點(diǎn),DO⊥平面α,垂足為O.
(1)證明:AB⊥平面ODE.
(2)求異面直線BC與OD所成角的余弦值.
【答案】(1)詳見解析;(2) .
【解析】試題分析:(1)由DO⊥α,ABα,所以DO⊥AB,連接BD,可得DE⊥AB,由線面垂直的判定定理即可證得成立;(2) 因?yàn)锽C∥AD,所以BC與OD所成的角等于AD與OD所成的角,即∠ADO是BC與OD所成的角. 由(1)知,AB⊥平面ODE,所以AB⊥OE,又DE⊥AB,∠DEO是二面角α-MN-β的平面角,從而∠DEO=60°, 不妨設(shè)AB=2,則AD=2,在Rt△DOE中求出DO的長度,作比求出余弦值,即可求出答案.
試題解析:
(1)如圖,因?yàn)镈O⊥α,ABα,所以DO⊥AB,連接BD,由題設(shè)知,△ABD是正三角形,又E是AB的中點(diǎn),所以DE⊥AB,DO∩DE=D,故AB⊥平面ODE.
(2)因?yàn)锽C∥AD,所以BC與OD所成的角等于AD與OD所成的角,即∠ADO是BC與OD所成的角.
由(1)知,AB⊥平面ODE,所以AB⊥OE,又DE⊥AB,于是∠DEO是二面角α-MN-β的平面角,從而∠DEO=60°.
不妨設(shè)AB=2,則AD=2,易知DE=.
在Rt△DOE中,DO=DE·sin60°=,
連接AO,在Rt△AOD中,cos∠ADO===,
故異面直線BC與OD所成角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= x3﹣(1+ )x2+2bx在區(qū)間[3,5]上不是單調(diào)函數(shù),則函數(shù)f(x)在R上的極大值為( )
A. b2﹣ b3
B. b﹣
C.0
D.2b﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個矩形花園里需要鋪兩條筆直的小路,已知矩形花園長AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過點(diǎn)D,問如何在BC上找到一點(diǎn)M,使得兩條小路AC與DM相互垂直?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,給出以下四個結(jié)論:
①D1C∥平面A1ABB1;②A1D1與平面BCD1相交;
③AD⊥平面D1DB;④平面BCD1⊥平面A1ABB1.
其中正確結(jié)論的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年存節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費(fèi)每超過600 元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸到2個紅球,則打6折;若摸到1個紅球,則打7折;若沒摸到紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費(fèi)了 600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求的值域;
(2)設(shè)函數(shù), ,若對于任意, 總存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)滿足f(x+1)=﹣f(x),當(dāng)x∈(0,1)時,f(x)=﹣2x , 則f(log210)等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)學(xué)生的視力,教室內(nèi)的日光燈在使用一段時間后必須更換.已知某校使用的100只日光燈在必須換掉前的使用天數(shù)如下表:
天數(shù)/天 | 151~180 | 181~210 | 211~240 | 241~270 | 271~300 | 301~330 | 331~360 | 361~390 |
燈管數(shù)/只 | 1 | 11 | 18 | 20 | 25 | 16 | 7 | 2 |
(1)試估計(jì)這種日光燈的平均使用壽命;
(2)若定期更換,可選擇多長時間統(tǒng)一更換合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在區(qū)間[﹣ , ]上有f(x)>0恒成立,則a的取值范圍為( )
A.(0,2]
B.[2,+∞)
C.(0,5)
D.(2,5]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com