【題目】當(dāng)今信息時(shí)代,眾多中小學(xué)生也配上了手機(jī).某機(jī)構(gòu)為研究經(jīng)常使用手機(jī)是否對(duì)學(xué)習(xí)成績有影響,在某校高三年級(jí)50名理科生第人的10次數(shù)學(xué)考成績中隨機(jī)抽取一次成績,用莖葉圖表示如圖:
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為經(jīng)常使用手機(jī)對(duì)學(xué)習(xí)成績有影響?
及格(60及60以上) | 不及格 | 合計(jì) | |
很少使用手機(jī) | |||
經(jīng)常使用手機(jī) | |||
合計(jì) |
(2)從50人中,選取一名很少使用手機(jī)的同學(xué)(記為甲)和一名經(jīng)常使用手機(jī)的同學(xué)(記為乙)解一道函數(shù)題,甲、乙獨(dú)立解決此題的概率分別為P1 , P2 , P2=0.4,若P1﹣P2≥0.3,則此二人適合為學(xué)習(xí)上互幫互助的“對(duì)子”,記X為兩人中解決此題的人數(shù),若E(X)=1.12,問兩人是否適合結(jié)為“對(duì)子”? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
【答案】
(1)解:由題意得列聯(lián)表為
及格 | 不及格 | 合計(jì) | |
很少使用手機(jī) | 20 | 7 | 27 |
經(jīng)常使用手機(jī) | 10 | 13 | 23 |
合計(jì) | 30 | 20 | 50 |
由聯(lián)列表可得: ,
所以有95%的把握認(rèn)為經(jīng)常使用手機(jī)對(duì)學(xué)習(xí)有影響;
(2)解:依題意:解決此題的人數(shù)X的可能取值為0,1,2,
可得X的分布列為
X | 0 | 1 | 2 |
P | (1﹣P1)(1﹣P2) | (1﹣P1)P1+P2(1﹣P2) | P1P2 |
數(shù)學(xué)期望為E(X)=P1+P2=1.12,∴P1=1.12﹣0.4=0.72,
∴P1﹣P2=0.32≥0.3,
所以二人適合結(jié)為“對(duì)子”.
【解析】(1)由題意計(jì)算對(duì)應(yīng)數(shù)據(jù),填寫列聯(lián)表,由聯(lián)列表中數(shù)據(jù)計(jì)算K2,對(duì)照臨界值得出結(jié)論;(2)依題意知X的可能取值,寫出X的分布列,計(jì)算數(shù)學(xué)期望,求出P1的值,從而得出結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用莖葉圖,掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向左平移 個(gè)單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于直線x=ω對(duì)稱且在區(qū)間(﹣ω,ω)內(nèi)單調(diào)遞增,則ω的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)為奇函數(shù),且在(﹣∞,0)內(nèi)是減函數(shù),f(﹣2)=0,則xf(x)<0的解集為( )
A.(﹣1,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,D為邊AC上一點(diǎn),BC=2 ,∠DBC=45°.
(1)若CD=2 ,求△BCD的面積;
(2)若角C為銳角,AB=6 ,sinA= ,求CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 過F2作一條直線(不與x軸垂直)與橢圓交于A,B兩點(diǎn),如果△ABF1恰好為等腰直角三角形,該直線的斜率為( )
A.±1
B.±2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為 的正方形 (及其內(nèi)部)繞 旋轉(zhuǎn)一周形成圓柱,如圖, 長為 , 長為 ,其中 與 在平面 的同側(cè).
(1)求三棱錐 的體積;
(2)求異面直線 與 所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化肥廠甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下: 甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個(gè)車間的產(chǎn)品較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在對(duì)于定義域?yàn)镽的函數(shù)f(x),若存在非零實(shí)數(shù)x0 , 使函數(shù)f(x)在(﹣∞,x0)和(x0 , +∞)上均有零點(diǎn),則稱x0為函數(shù)f(x)的一個(gè)“紐點(diǎn)”.則下列四個(gè)函數(shù)中,不存在“紐點(diǎn)”的是( )
A.f(x)=x2+bx﹣1(b∈R)
B.f(x)=2x﹣x2
C.f(x)=﹣x﹣1
D.f(x)=2﹣|x﹣1|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com