【題目】如圖,在三棱柱中, 平面是BC的中點(diǎn).
求證: ;
求異面直線AE與所成的角的大。
若G為中點(diǎn),求二面角的正切值.
【答案】見(jiàn)解析; .
【解析】試題分析: 由面ABC及線面垂直的性質(zhì)可得,由是BC的中點(diǎn),及等腰三角形三線合一,可得,結(jié)合線面垂直的判定定理可證得面,進(jìn)而由線面垂直的性質(zhì)得到;
取的中點(diǎn),連,根據(jù)異面直線夾角定義可得, 是異面直線A與所成的角,設(shè),解三角形可得答案.
連接AG,設(shè)P是AC的中點(diǎn),過(guò)點(diǎn)P作于Q,連,則,由直三棱錐的側(cè)面與底面垂直,結(jié)合面面垂直的性質(zhì)定理,可得平面,進(jìn)而由二面角的定義可得是二面角的平面角.
試題解析:
因?yàn)?/span>面面ABC,所以
由為BC的中點(diǎn)得到
面, .
解: 取的中點(diǎn),連,
則,
是異面直線AE與所成的角
,則由,
可得
在中, -
所以異面直線AE與所成的角為-
連接AG,設(shè)P是AC的中點(diǎn),過(guò)點(diǎn)P作于Q,連,則
又平面平面
平面-
而.
是二面角的平面角
由,得
所以二面角的平面角正切值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)f(x)的對(duì)稱軸是x=-1,f(x)在R上的最小值是0,且f(1)=4.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=(λ-1)f(x-1)-λx-3在x∈[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,面積為的正方形中有一個(gè)不規(guī)則的圖形,可按下面方法估計(jì)的面積:在正方形中隨機(jī)投擲個(gè)點(diǎn),若個(gè)點(diǎn)中有個(gè)點(diǎn)落入中,則的面積的估計(jì)值為,假設(shè)正方形的邊長(zhǎng)為2, 的面積為1,并向正方形中隨機(jī)投擲個(gè)點(diǎn),以表示落入中的點(diǎn)的數(shù)目.
(I)求的均值;
(II)求用以上方法估計(jì)的面積時(shí), 的面積的估計(jì)值與實(shí)際值之差在區(qū)間內(nèi)的概率.
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=,則關(guān)于x的函數(shù)F(x)=f(x)-的所有零點(diǎn)之和為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=sin(ωx+ )向右平移 個(gè)單位后,所得的圖象與原函數(shù)圖象關(guān)于x軸對(duì)稱,則ω的最小正值為( )
A.1
B.2
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),命題,;命題.
(1)若為真命題,求的取值范圍;
(2)若為真命題,求的取值范圍;
(3)若“”為假命題,“”為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】日前,揚(yáng)州下達(dá)了2018年城市建設(shè)和環(huán)境提升重點(diǎn)工程項(xiàng)目計(jì)劃,其中將對(duì)一塊以O為圓心,R(R為常數(shù),單位:米)為半徑的半圓形荒地進(jìn)行治理改造,如圖所示,△OBD區(qū)域用于兒童樂(lè)園出租,弓形BCD區(qū)域(陰影部分)種植草坪,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55元,兒童樂(lè)園出租的利潤(rùn)是每平方米95元.
(1)設(shè)∠BOD=θ(單位:弧度),用θ表示弓形BCD的面積S弓=f(θ);
(2)如果市規(guī)劃局邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)∠BOD的大小才能使總利潤(rùn)最大?并求出該最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=sinxcosx﹣cos2(x+ ). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com