【題目】將圓的一組等分點(diǎn)分別涂上紅色或藍(lán)色,從任意一點(diǎn)開(kāi)始,按逆時(shí)針?lè)较蛞来斡涗?/span>個(gè)點(diǎn)的顏色,稱為該圓的一個(gè)“階色序”,當(dāng)且僅當(dāng)兩個(gè)“階色序”對(duì)應(yīng)位置上的顏色至少有一個(gè)不相同時(shí),稱為不同的“階色序”.若某圓的任意兩個(gè)“階色序”均不相同,則稱該圓為“階魅力圓”.“4階魅力圓”中最多可有的等分點(diǎn)個(gè)數(shù)為__________

【答案】16

【解析】分析:由題意可得,“4階色序”中,每個(gè)點(diǎn)的顏色有兩種選擇,故“4階色序”共有2×2 ×2×2=16種,從兩個(gè)方面進(jìn)行了論證,即可得到答案.

詳解:“4階色序”中,每個(gè)點(diǎn)的顏色有兩種選擇,故“4階色序”共有2×2×2×2=16種,

一方面,n個(gè)點(diǎn)可以構(gòu)成n個(gè)“4階色序”,故“4階魅力圓”中的等分點(diǎn)的個(gè)數(shù)不多于16個(gè);

另一方面,若n=16,則必需包含全部共16個(gè)“4階色序”,

不妨從(紅,紅,紅,紅)開(kāi)始按逆時(shí)針?lè)较虼_定其它各點(diǎn)顏色,顯然“紅,紅,紅,紅,藍(lán),藍(lán),藍(lán),藍(lán),紅,藍(lán),藍(lán),紅,紅,藍(lán),紅,藍(lán)”符合條件.

故“4階魅力圓”中最多可有16個(gè)等分點(diǎn).

故答案為:16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程是 ,射線 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q.求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩個(gè)企業(yè)的用電負(fù)荷量關(guān)于投產(chǎn)持續(xù)時(shí)間單位:小時(shí)的關(guān)系均近似地滿足函數(shù)

1根據(jù)圖象,求函數(shù)的解析式;

2為使任意時(shí)刻兩企業(yè)用電負(fù)荷量之和不超過(guò),現(xiàn)采用錯(cuò)峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時(shí)投產(chǎn),求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,的中點(diǎn),將沿折起,使得.

(1)若的中點(diǎn),求證:平面;

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣x﹣lnx,a∈R.
(1)當(dāng) 時(shí),求函數(shù)f(x)的最小值;
(2)若﹣1≤a≤0,證明:函數(shù)f(x)有且只有一個(gè)零點(diǎn);
(3)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線x2=2py(p>0)上的點(diǎn)M(m,1)到焦點(diǎn)F的距離為2,
(1)求拋物線的方程;
(2)如圖,點(diǎn)E是拋物線上異于原點(diǎn)的點(diǎn),拋物線在點(diǎn)E處的切線與x軸相交于點(diǎn)P,直線PF與拋物線相交于A,B兩點(diǎn),求△EAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題函數(shù)上的奇函數(shù),命題函數(shù)的定義域和值域都是,其中.

(1)若命題為真命題,求實(shí)數(shù)的值;

(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知長(zhǎng)方形ABCD中,AB=2 ,AD= ,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問(wèn)點(diǎn)E在何位置時(shí),二面角E﹣AM﹣D的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ an=1,數(shù)列{bn},{cn}滿足bn=log3 ,cn= . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{cn}的前n項(xiàng)和為T(mén)n , 若不等式Tn<m對(duì)任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案