【題目】(本小題滿分14分)
某公司經(jīng)銷某產(chǎn)品,第天的銷售價格為(為常數(shù))(元∕件),第天的銷售量為(件),且公司在第天該產(chǎn)品的銷售收入為元.
(1)求該公司在第天該產(chǎn)品的銷售收入是多少?
(2)這天中該公司在哪一天該產(chǎn)品的銷售收入最大?最大收入為多少?
【答案】⑴第天的銷售收入為元;⑵第天該公司的銷售收入最大,最大值為 元.
【解析】本試題主要是考查了分段函數(shù)在實際生活中的運用。考查了同學們分析問題和解決問題的能力。
(1)先設(shè)該公司第天的銷售收入為,
由已知,第天的銷售價格,銷售量.
得到參數(shù)a的值,然后代入可知第天的銷售收入
(2)由條件得函數(shù)為分段函數(shù)可知()
然后分析各段函數(shù)的最值,來得到分段函數(shù)的最值問題。
(1)設(shè)該公司第天的銷售收入為,
由已知,第天的銷售價格,銷售量.
所以第天的銷售收入,所以.………………2分
第天的銷售收入 (元) . ………………………………4分
(2)由條件得()…………7分
當時,.
(當且僅當時取等號),所以,當時取最大值,.……9分
當時,,
所以,當時,取最大值為 …………………10分
當時,.
(當且僅當時取等號),所以當時,取最大值. 12分
由于,所以第天該農(nóng)戶的銷售收入最大.
答:⑴第天的銷售收入為元;⑵第天該公司的銷售收入最大,最大值為 元.……………………………………………………………………………………14分
科目:高中數(shù)學 來源: 題型:
【題目】已知命題P:函數(shù)是增函數(shù),命題Q:
(1)寫出命題Q的否命題,并求出實數(shù)的取值范圍,使得命題為真命題;
(2)如果是真命題,是假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是.
(1)求a的值;
(2)能否找到一點P,使得P點同時滿足下列三個條 件:
①P是第一象限的點;
②P 點到l1的距離是P點到l2的距離的;
③P點到l1的距離與P點到l3的距離之比是∶.若能,求P點坐標;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【湖南省2017屆高三長郡中學、衡陽八中等十三校重點中學第一次聯(lián)考數(shù)學(理)】
已知函數(shù).
(1)當時,試求函數(shù)圖像過點的切線方程;
(2)當時,若關(guān)于的方程有唯一實數(shù)解,試求實數(shù)的取值范圍;
(3)若函數(shù)有兩個極值點,且不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,證明a>0,并利用二分法證明方程f(x)=0在區(qū)間[0,1]內(nèi)有兩個實根.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中
(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對數(shù)的底數(shù)).
(1)判斷f(x)的單調(diào)性;
(2)當f(x)<0在(0,+∞)上恒成立時,求a的取值范圍;
(3)證明:當x∈(0,+∞)時, (1+x) <e.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對應年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程,預測年該企業(yè)污水凈化量;
(3)請用數(shù)據(jù)說明回歸方程預報的效果.
附注: 參考數(shù)據(jù):;
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最;
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com