【題目】設(shè)函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對數(shù)的底數(shù)).
(1)判斷f(x)的單調(diào)性;
(2)當f(x)<0在(0,+∞)上恒成立時,求a的取值范圍;
(3)證明:當x∈(0,+∞)時, (1+x) <e.
【答案】見解析
【解析】(1)f′(x)=-a,函數(shù)f(x)=ln x-ax的定義域為(0,+∞),
當a≤0時,f′(x)>0,此時f(x)在(0,+∞)上是增函數(shù),
當a>0時,x∈時,f′(x)>0,此時f(x)在上是增函數(shù),x∈時,f′(x)<0,此時f(x)在上是減函數(shù).
綜上,當a≤0時,f(x)在(0,+∞)上是增函數(shù),當a>0時,f(x)在上是增函數(shù),在上是減函數(shù).
(2)f(x)<0在(0,+∞)上恒成立,即a>在(0,+∞)上恒成立,
設(shè)g(x)=,則g′(x)=,
當x∈(0,e)時,g′(x)>0,g(x)為增函數(shù),當x∈(e,+∞)時,g′(x)<0,g(x)為減函數(shù),
故當x=e時,g(x)取得最大值,
所以a的取值范圍是.
(3)證明:要證當x∈(0,+∞)時, (1+x) <e,設(shè)t=1+x,t∈(1,+∞),只要證t<et,兩邊取以e為底數(shù)的對數(shù),即ln t<t-1.
由(1)知當a=1時,f(x)=ln x-x的最大值為-1,此時x=1,所以當t∈(1,+∞)時,ln t-t<-1,
即得ln t<t-1,所以原不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,已知曲線(為參數(shù)),在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.
(1)求曲線與的交點的直角坐標;
(2)設(shè)點, 分別為曲線上的動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
某公司經(jīng)銷某產(chǎn)品,第天的銷售價格為(為常數(shù))(元∕件),第天的銷售量為(件),且公司在第天該產(chǎn)品的銷售收入為元.
(1)求該公司在第天該產(chǎn)品的銷售收入是多少?
(2)這天中該公司在哪一天該產(chǎn)品的銷售收入最大?最大收入為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.直線過點.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分) 在△ABC中,a、b、c分別為角A、B、C的對邊,且,
(1)求的度數(shù);
(2)若, ,求b和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017銀川一中模擬】如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作矩形ADEF,然后沿邊AD將矩形ADEF翻折,使平面ADEF與平面ABCD垂直.
(1)求證:BC⊥平面BDE;
(2)若點D到平面BEC的距離為,求三棱錐F-BDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)當時,求在上的單調(diào)區(qū)間;
(2)設(shè)函數(shù),當有兩個極值點時,總有,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com