設定義在R上的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,則不等式f(x)<0的解集為
 
考點:函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用奇函數(shù)的對稱性、單調(diào)性即可得出.
解答: 解:如圖所示,
不等式f(x)<0的解集為
(-∞,-2)∪(0,2).
故答案為:(-∞,-2)∪(0,2).
點評:本題考查了奇函數(shù)的對稱性、單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一條光線經(jīng)過點P(2,3)射在直線x+y+1=0上,反射后,經(jīng)過點A(1,1),則光線的反射線所在的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0≤a-b≤2,-2≤a+b≤0,則a+3b的范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列兩個命題,其中真命題為
 

①設M(x0,y0),E(
3
y1,y1),F(xiàn)(-
3
y2,y2),O(0,0)是平行四邊形OEMF的四個頂點,若y02=3x02-3,則
ME
MF
=-
1
2

②若對任意實數(shù)x,函數(shù)y=1-
1
2x+t
(t為實常數(shù))總有意義,則該函數(shù)的值域是(1-
1
t
,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=49,an+1=an+2n,則
an
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象,如果A>0,ω>0,0<φ<π,則此函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

[81-0.25+(3
3
8
 -
1
3
] -
1
2
+(log43+log83)(log32+log92)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的長軸在y軸上,其橢圓方程為:
x2
m
+
y2
13
=1
,且焦距為4,則m等于( 。
A、4B、5C、7D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(2x-3)+2的圖象恒過定點P,P在指數(shù)函數(shù)f(x)的圖象上,則f(-1)的值為( 。
A、
2
B、
2
2
C、-
2
D、-
2
2

查看答案和解析>>

同步練習冊答案