【題目】已知函數(shù),且滿足.

1)判斷函數(shù)上的單調(diào)性,并用定義證明;

2)設(shè)函數(shù),若上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;

3)若存在實(shí)數(shù),使得關(guān)于的方程恰有4個(gè)不同 的正根,求實(shí)數(shù)的取值范圍.

【答案】1上為增函數(shù);證明見解析;(2;(3.

【解析】

(1)可得,再判斷函數(shù)上的單調(diào)性即可.

(2)根據(jù)(1)中的單調(diào)性,再求解上的單調(diào)性,再根據(jù)函數(shù)性質(zhì)進(jìn)行范圍分析即可.

(3)將方程化簡(jiǎn)為,利用復(fù)合函數(shù)零點(diǎn)的方法,先分析關(guān)于的二次函數(shù)的根的問題,再根據(jù)零點(diǎn)存在性定理列式求不等式即可.

1)由,得0.

因?yàn)?/span>,所以,所以.

當(dāng)時(shí),,任取,且,

,

因?yàn)?/span>,則,,

所以上為增函數(shù);

2)由(1)可知,上為增函數(shù),當(dāng)時(shí),

同理可得上為減函數(shù),當(dāng)時(shí),.

所以

3)方程可化為,

.

設(shè),方程可化為.

要使原方程有4個(gè)不同的正根,

則方程有兩個(gè)不等的根

則有,解得,

所以實(shí)數(shù)m的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.

(1)證明:坐標(biāo)原點(diǎn)O在圓M上;

(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.

【答案】(1)見解析;(2)

【解析】(1)證明略;(2)直線的方程為,圓的方程為.或直線的方程為,圓的方程為

試題分析:(1)設(shè)出點(diǎn)的坐標(biāo),聯(lián)立直線與拋物線的方程,由斜率之積為可得,即得結(jié)論;(2)結(jié)合(1)的結(jié)論求得實(shí)數(shù)的值,分類討論即可求得直線的方程和圓的方程.

試題解析:(1)設(shè),.

可得,則.

,故.

因此的斜率與的斜率之積為,所以.

故坐標(biāo)原點(diǎn)在圓上.

(2)由(1)可得.

故圓心的坐標(biāo)為,圓的半徑.

由于圓過點(diǎn),因此,故

,

由(1)可得.

所以,解得.

當(dāng)時(shí),直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓的方程為.

當(dāng)時(shí),直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓 的方程為.

【名師點(diǎn)睛】直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;在解決直線與拋物線的位置關(guān)系時(shí),要特別注意直線與拋物線的對(duì)稱軸平行的特殊情況.中點(diǎn)弦問題,可以利用點(diǎn)差法,但不要忘記驗(yàn)證或說明中點(diǎn)在曲線內(nèi)部.

型】解答
結(jié)束】
21

【題目】已知函數(shù)

(1)若,求a的值;

(2)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某商品在過去20天的日銷售量和日銷售價(jià)格均為銷售時(shí)間t(天)的函數(shù),日銷售量(單位:件)近似地滿足: ,日銷售價(jià)格(單位:元)近似地滿

足:

(I)寫出該商品的日銷售額S關(guān)于時(shí)間t的函數(shù)關(guān)系;

(Ⅱ)當(dāng)t等于多少時(shí),日銷售額S最大?并求出最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3名男生和3名女生共6人站成一排,若男生甲不站兩端,且不與男生乙相鄰,3名女生有且只有2名女生相鄰,則不同排法的種數(shù)是_____.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)不同零點(diǎn).設(shè)函數(shù)的定義域?yàn)?/span>,且的最大值記為,最小值記為

1)求(用表示);

2)當(dāng)時(shí),試問以為長(zhǎng)度的線段能否構(gòu)成一個(gè)三角形,如果不一定,進(jìn)一步求出的取值范圍,使它們能構(gòu)成一個(gè)三角形;

3)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測(cè)可知,進(jìn)入世紀(jì)以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長(zhǎng).記年為第年,且前年中,第年與年產(chǎn)量萬件之間的關(guān)系如下表所示:

近似符合以下三種函數(shù)模型之一:,,

(1)找出你認(rèn)為最適合的函數(shù)模型,并說明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國(guó)對(duì)該產(chǎn)品進(jìn)行反傾銷的影響,年的年產(chǎn)量比預(yù)計(jì)減少,試根據(jù)所建立的函數(shù)模型,確定年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司將進(jìn)貨單價(jià)為8元一個(gè)的商品按10元一個(gè)出售,每天可以賣出100個(gè),若這種商品的售價(jià)每個(gè)上漲1元,則銷售量就減少10個(gè).

1)求售價(jià)為13元時(shí)每天的銷售利潤(rùn);

2)求售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大,并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ,求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案