已知i為虛數(shù)單位,復(fù)數(shù)
2
1+i
-i的共軛復(fù)數(shù)的虛部為
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用兩個復(fù)數(shù)代數(shù)形式的乘除法法則、虛數(shù)單位i的冪運(yùn)算性質(zhì)化簡復(fù)數(shù),求得它的共軛復(fù)數(shù),從而得出結(jié)論.
解答: 解:∵復(fù)數(shù)
2
1+i
-i=
2(1-i)
(1+i)(1-i)
-i=1-i-i=1-2i,∴
.
z
=1+2i,
故答案為:2.
點(diǎn)評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=alnx(a∈R),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x+b(b∈R).
(1)求a、b的值;
(2)設(shè)集合A=[1,+∞),集合B={x|f(x)-m(x-
1
x
)≤0},若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C、D是兩個小區(qū)所在地,C、D到一條公路AB的垂直距離分別為CA=1km,DB=2km,A、B間的距離為3km,某公交公司要在A、B之間的某點(diǎn)N處建造一個公交站點(diǎn),使得N對C、D兩個小區(qū)的視角∠CND最大,則N處與A處的距離為
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓O的直徑AB=2,弦AC=1,D為AC的中點(diǎn),BD的延長線與圓O交于點(diǎn)E,則弦AE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)平面上,
OA
=(1,4),
OB
=(-3,1),且
OA
OB
在直線l的方向向量上的投影的長度相等,則直線l的斜率為( 。
A、-
1
4
B、
2
5
C、
2
5
或-
4
3
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足z•(1-i)=2-i(其中i是虛數(shù)單位),則z=( 。
A、
3
2
+
1
2
i
B、
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、
3
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=|
a
|x+1與直線y=|
b
|x平行,
a
,
b
為非零向量,則必有( 。
A、
a
b
B、
a
b
C、(
a
+
b
)⊥(
a
-
b
D、(
a
+
b
)∥(
a
-
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,己知
AB
AC
=9,sinB=sinCcosA,又△ABC的面積為6
(1)求△ABC的三邊長;
(2)若D為BC邊上的一點(diǎn),且CD=1,求tan∠BAD.

查看答案和解析>>

同步練習(xí)冊答案