已知直線經(jīng)過點P(-4,-3),且被圓截得的弦長為8,則直線的方程是_________.

試題分析:當x=-4時,符合題意,另一直線設(shè)為,kx-y+4k-3=0
圓心(-1,-2)到直線的距離:d=
,3=|
k=,直線L的方程。故答案為。
點評:解決該試題的關(guān)鍵是利用圓的半徑和圓心到直線的距離,以及半弦長的勾股定理來得到弦長的問題的運用。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面直角坐標系中O是坐標原點,,圓的外接圓,過點(2,6)的直線為。
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長為,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知直線,圓.
(Ⅰ)證明:對任意,直線與圓恒有兩個公共點.
(Ⅱ)過圓心于點,當變化時,求點的軌跡的方程.
(Ⅲ)直線與點的軌跡交于點,與圓交于點,是否存在的值,使得?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程為,過點作直線與圓交于、兩點。

(1)若坐標原點O到直線AB的距離為,求直線AB的方程;
(2)當△的面積最大時,求直線AB的斜率;
(3)如圖所示過點作兩條直線與圓O分別交于R、S,若,且兩角均為正角,試問直線RS的斜率是否為定值,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為(  ).
A.-1 B.1 C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)A,B為直線與圓的兩個交點,則|AB|=(    )
A.1B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線與曲線有兩個交點,則的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線被圓截得的弦長為4,則的最大值是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若圓關(guān)于直線對稱,則直線的斜率是(   ) 
A.6B.C.D.

查看答案和解析>>

同步練習冊答案