(本題滿分14分)已知函數(shù)滿足對(duì)于,均有成立.
(1)求函數(shù)的解析式;
(2)求函數(shù)的最小值;
(3)證明:.
(1)      (2)1   
(1)由已知等式,用代替得到一個(gè)關(guān)于得方程組,解出.
(2)用導(dǎo)數(shù)法求最值.(3) 在中令),用放縮法證明.
試題分析:(1)依題意得,
解之得 .                                  ……4分
(2),
當(dāng)時(shí)  當(dāng)時(shí)
)在上遞減在上遞增,
.                                         ……8分
(3)由(2)得 恒成立,令,  則
   在中令),
   ∴,∴,
, ,…,,),
 
 .                             ……14分
點(diǎn)評(píng):(1)解方程組是要注意把看作是兩個(gè)變量.(3)要仔細(xì)分析要證明的不等式的結(jié)構(gòu),令是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)滿足),則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù).(
(1)若函數(shù)有三個(gè)零點(diǎn),且,,求函數(shù) 的單調(diào)區(qū)間;
(2)若,試問(wèn):導(dǎo)函數(shù)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說(shuō)明理由.
(3)在(Ⅱ)的條件下,若導(dǎo)函數(shù)的兩個(gè)零點(diǎn)之間的距離不小于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知關(guān)于x的方程的三個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)拋物線,一個(gè)雙曲線的離心率,則的取值范圍________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義在上的函數(shù),對(duì)任意均有,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知一等差數(shù)列的前四項(xiàng)和為124,后四項(xiàng)和為156,各項(xiàng)和為210,則此等差數(shù)列的項(xiàng)數(shù)是(    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線斜率為                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案