曲線
在點
處的切線斜率為
.
試題分析:
,
點評:函數(shù)在某點處的導數(shù)值等于該點處的切線斜率
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,有一邊長為2米的正方形鋼板
缺損一角(圖中的陰影部分),邊緣線
是以直線
為對稱軸,以線段
的中點
為頂點的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.
(Ⅰ)請建立適當?shù)闹苯亲鴺讼,求陰影部分的邊緣線
的方程;
(Ⅱ)如何畫出切割路徑
,使得剩余部分即直角梯形
的面積最大?
并求其最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知函數(shù)
(1)判斷
的單調(diào)性并證明;
(2)若
滿足
,試確定
的取值范圍。
(3)若函數(shù)
對任意
時,
恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,
,其中
R .
(1)討論
的單調(diào)性;
(2)若
在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(3)設(shè)函數(shù)
, 當
時,若存在
,對于任意的
,總有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)已知函數(shù)
滿足對于
,均有
成立.
(1)求函數(shù)
的解析式;
(2)求函數(shù)
的最小值;
(3)證明:
…
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(
a為實常數(shù)).
(1)若
,求證:函數(shù)
在(1,+.∞)上是增函數(shù);
(2)求函數(shù)
在[1,e]上的最小值及相應的
值;
(3)若存在
,使得
成立,求實數(shù)
a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)設(shè)函數(shù)
..
(Ⅰ)
時,求
的單調(diào)區(qū)間;
(Ⅱ)當
時,設(shè)
的最小值為
,若
恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題14分)
設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個相異的實根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
若
在區(qū)間
上是減函數(shù),則實數(shù)a的取值范圍是
.
查看答案和解析>>