已知i是虛數(shù)單位,m∈R,且
2-mi
1+i
是純虛數(shù),則(
2-mi
2+mi
2008等于( 。
A、1B、-1C、iD、-i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:化簡(jiǎn)復(fù)數(shù)為a+bi的形式,通過(guò)復(fù)數(shù)是純虛數(shù),求出m,然后求解所求結(jié)果.
解答: 解:
2-mi
1+i
=
(2-mi)(1-i)
(1+i)(1-i)
=
2-m+(-2-m)i
2
,
2-mi
1+i
是純虛數(shù),∴2-m=0且-2-m≠0,解得m=2,
∴(
2-mi
2+mi
2008=(
2-2i
2+2i
2008=(
1-i
1+i
2008=[(
1-i
1+i
2]1004=(
-2i
2i
1004=1.
故選:A.
點(diǎn)評(píng):本題考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)的基本概念的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是偶函數(shù),且f(x)在[0,+∞]是增函數(shù),如果不等式f(a)≤f(1)恒成立,則實(shí)數(shù)a取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從0至4五個(gè)自然數(shù)中任意取出不同三個(gè),分別作為關(guān)于x的方程ax2+bx+c=0的系數(shù),則所得方程有實(shí)數(shù)解的取法有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x+3y≥0
x-2y≥0
x2+y2≤4
所確定的平面區(qū)域D的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1的離心率為2,則該雙曲線的漸近線方程為(  )
A、x±2y=0
B、2x±y=0
C、
3
x±y=0
D、x±
3
y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓x2+y2=4的一條切線與x軸、y軸分別交于點(diǎn)A、B,則|AB|的最小值為( 。
A、4
B、4
2
C、6
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
2
1-i
(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(  )
A、(1,1)
B、(1,-1)
C、(
1
2
,-
1
2
D、(
1
2
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={f(x)|f2(a)-f2(b)=f(a+b)•f(a-b),x,y∈R},有下列命題:
①若f1(x)=
1,  x≥0
-1,x<0
,則f1(x)∈M;
②若f2(x)=2x,則f2(x)∈M;
③若f3(x)∈M,則y=f3(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
④若f4(x)∈M,則對(duì)于任意不等的實(shí)數(shù)x1,x2,總有
f4(x1)-f4(x2)
x1-x2
<0成立.
其中所有正確命題的序號(hào)是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式log2(-x2+x+2)>1的解集為( 。
A、(-2,0)
B、(-1,1)
C、(0,1)
D、(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案