如圖,四棱錐S-ABCD的底面是邊長為1的正方形,SD垂直于底面ABCD且SD=1,SB=

(1)求證:BC⊥SC;

(2)設(shè)棱SA的中點為M,求異面直線DM與SB所成角的大。

答案:
解析:

  (1)證明:∵底面ABCD是正方形,

  ∴BC⊥DC.

  ∵SD⊥底面ABCD,

  ∴SD⊥BC.

  又DC∩SD=D,

  ∴BC⊥平面SDC.

  ∴BC⊥SC.

  (2)解:如圖,取AB中點P,連結(jié)MP、DP.

  在△ABS中,由中位線定理得MP∥SB,

  ∴∠DMP是異面直線DM與SB所成的角.

  

  ∴在△DMP中,

  有DP2=MP2+DM2

  ∴∠DMP=90°,

  即異面直線DM與SB所成的角為90°.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
3
,點E、G分別在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)證明平面BG∥平面SDE;
(2)求面SAD與面SBC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點,AD=2,AB=1.SP與平面ABCD所成角為
π4
. 
(1)求證:平面SPD⊥平面SAP;
(2)求三棱錐S-APD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點,且SE=2EC,SA=6,AB=2.
(1)求證:平面EBD⊥平面SAC;
(2)求三棱錐E-BCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側(cè)棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
(1)求證:四邊形ABCD是直角梯形;
(2)求異面直線SB與CD所成角的大;
(3)求直線AC與平面SAB所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案