【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進口開始到出口,每遇到一個岔路口,每位游客選擇其中一條道路行進是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進口的岔路口就開始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設(shè)點是其中的一個交叉路口點.

(1)求甲經(jīng)過點的概率;

(2)設(shè)這名游客中恰有名游客都是經(jīng)過點,求隨機變量的概率分布和數(shù)學(xué)期望.

【答案】(1);(2)詳見解析.

【解析】

(1) 選擇從中間一條路走到的概率為.選擇從最右邊的道路走到點的概率為.因為選擇中間道路和最右邊道路行走的兩個事件彼此互斥,所以.(2) 隨機變量可能的取值,,,,再求出它們對應(yīng)的概率,即得隨機變量的概率分布和數(shù)學(xué)期望.

解:(1)設(shè)“甲從進口開始到出口經(jīng)過點”為事件,

甲選中間的路的概率為,在前面從岔路到達點的概率為,這兩步事件相互獨立,

所以選擇從中間一條路走到的概率為.

同理,選擇從最右邊的道路走到點的概率為.

因為選擇中間道路和最右邊道路行走的兩個事件彼此互斥,

所以.

答:甲從進口開始到出口經(jīng)過點的概率.

(2)隨機變量可能的取值,,,,

,

,

,

概率分布為:

數(shù)學(xué)期望 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達標(biāo)”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達標(biāo)

鍛煉達標(biāo)

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標(biāo)”與性別有關(guān)?

(2)在“鍛煉達標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,,,是邊上一點,將沿折起,得到三棱錐。若該三棱錐的頂點在底面的射影在線段上,設(shè),則的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2xgx)=x2ax(其中aR.對于不相等的實數(shù)x1,x2,設(shè)mn,現(xiàn)有如下命題:

對于任意不相等的實數(shù)x1,x2,都有m0;

對于任意的a及任意不相等的實數(shù)x1,x2,都有n0;

對于任意的a,存在不相等的實數(shù)x1,x2,使得mn

對于任意的a,存在不相等的實數(shù)x1,x2,使得m=-n.

其中真命題有___________________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知城市周邊有兩個小鎮(zhèn)、,其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,夾角的正切值為2,為方便交通,現(xiàn)準(zhǔn)備建設(shè)一條經(jīng)過城市的公路,使鄉(xiāng)鎮(zhèn)分別位于的兩側(cè),過建設(shè)兩條垂直的公路,分別與公路交匯于、兩點,以為原點,所在直線為軸,建立如圖所示的平面直角坐標(biāo)系.

1)當(dāng)兩個交匯點、重合,試確定此時路段長度;

2)當(dāng),計算此時兩個交匯點到城市的距離之比;

3)若要求兩個交匯點、的距離不超過,求正切值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)a=1時,求函數(shù)在(2,)處的切線方程:

(2)當(dāng)a=2時,求函數(shù)的單調(diào)區(qū)間和極值;

(3)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與雙曲線相交于、兩點,為坐標(biāo)原點,且

1)求滿足的關(guān)系;

2)求證:點到直線的距離是定值,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知五面體中,四邊形為矩形,,且二面角的大小為.

(1)證明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的內(nèi)心,三邊長,點在邊上,且,若直線交直線于點,則線段的長為______.

查看答案和解析>>

同步練習(xí)冊答案