已知函數(shù),.
(1)求函數(shù)的最小值;
(2)若,證明:當時,.

(1)h(0)=0;(2)證明過程詳見解析.

解析試題分析:本題主要考查導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的最值、不等式的基本性質(zhì)等基礎知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力,考查學生的函數(shù)思想.第一問,先得到表達式,對求導,利用“單調(diào)遞增;單調(diào)遞減”解不等式求函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性確定最小值所在的位置;第二問,先將代入到所求的式子中,得到①式,再利用第一問的結(jié)論,即,即得到,通過,在上式中兩邊同乘得到②式,若成立則所求證的表達式成立,所以構(gòu)造函數(shù)φ(t)=(1-t)k-1+kt,證明即可.
(1)h(x)=f(x)-g(x)=ex-1-x,h¢(x)=ex-1.
當x∈(-∞,0)時,h¢(x)<0,h(x)單調(diào)遞減;
當x∈(0,+∞)時,h¢(x)>0,h(x)單調(diào)遞增.
當x=0時,h(x)取最小值h(0)=0.       4分
(2).   ①
由(1)知,,即
,則
所以.       ②  7分
設φ(t)=(1-t)k-1+kt,t∈[0,1].
由k>1知,當t∈(0,1)時,φ¢(t)=-k(1-t)k-1+k=k[1-(1-t)k]>0,
φ(t)在[0,1]單調(diào)遞增,當t∈(0,1)時,φ(t)>φ(0)=0.
因為,所以
因此不等式②成立,從而不等式①成立.      12分
考點:導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的最值、不等式的基本性質(zhì).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2-alnx(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;
(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)討論內(nèi)和在內(nèi)的零點情況.
(2)設內(nèi)的一個零點,求上的最值.
(3)證明對恒有.[來

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:對于任意的,都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設
① 當時,對任意,都有成立,求的最大值;
② 設的導函數(shù).若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)當時,求函數(shù)在區(qū)間內(nèi)的最大值;
(2)當時,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中.
(1)若,求函數(shù)的極值;
(2)當時,試確定函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的導函數(shù)的簡圖,它與軸的交點是(0,0)和(1,0),


(1)求的解析式及的極大值.
(2)若在區(qū)間(m>0)上恒有≤x成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)滿足(其中在點處的導數(shù),為常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間
(2)設函數(shù),若函數(shù)上單調(diào),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案