已知函數(shù)滿足(其中為在點(diǎn)處的導(dǎo)數(shù),為常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù),若函數(shù)在上單調(diào),求實(shí)數(shù)的取值范圍.
(1)詳見解析;(2) c ³11或c £ –
解析試題分析:(1)將的值代入的解析式,列出的變化情況表,根據(jù)表求出函數(shù)的單調(diào)區(qū)間.
(2)求出函數(shù)的導(dǎo)數(shù),構(gòu)造函數(shù),分函數(shù)遞增和遞減兩類,令和在上恒成立,求出C的范圍.
試題解析:(1)由,得.
取,得,
解之,得,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/b/a0dmi2.png" style="vertical-align:middle;" />.
從而,列表如下:1 + 0 - 0 + ↗ 有極大值 ↘ 有極小值 ↗
∴的單調(diào)遞增區(qū)間是和;
的單調(diào)遞減區(qū)間是.
(3)函數(shù),
有=(–x2– 3 x+C–1)ex,
當(dāng)函數(shù)在區(qū)間上為單調(diào)遞增時(shí),等價(jià)于h(x)= –x2– 3 x+C–1³0在上恒成立, 只要h(2)³0,解得c ³11,
當(dāng)函數(shù)在區(qū)間上為單調(diào)遞減時(shí),等價(jià)于h(x)= –x2– 3 x+C–1£0在上恒成立, 即=,解得c
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-.
(1)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
(2)f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;
(3)試求實(shí)數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ex-ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求f(x)的反函數(shù)的圖象上圖象上,點(diǎn)(1,0)處的切線方程;
(2)證明: 曲線y =" f" (x)與曲線有唯一公共點(diǎn).
(3)設(shè)a<b, 比較與的大小, 并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1) 當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2) 求函數(shù)的單調(diào)區(qū)間及在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某風(fēng)景區(qū)在一個(gè)直徑AB為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)A與圓
弧上的一點(diǎn)C之間設(shè)計(jì)為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點(diǎn)C到點(diǎn)B設(shè)計(jì)為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計(jì))
(1)設(shè)(弧度),將綠化帶總長(zhǎng)度表示為的函數(shù);
(2)試確定的值,使得綠化帶總長(zhǎng)度最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com