已知函數(shù)f(x)=b(x+1)lnx-x+1,斜率為l的直線(xiàn)與函數(shù)f(x)的圖象相切于(1,0)點(diǎn).
(Ⅰ)求h(x)=f(x)-xlnx的單調(diào)區(qū)間;
(Ⅱ)當(dāng)實(shí)數(shù)0<a<1時(shí),討論數(shù)學(xué)公式的極值點(diǎn).

解:(Ⅰ)由題意知:f′(x)=b(lnx+)-1,f′(1)=2b-1=1,b=1,
h(x)=f(x)-xlnx=lnx-x+1,h′(x)=-1,
h′(x)=-1>0解得0<x<1;
h′(x)=-1<0解得x>1;
∴h(x)=f(x)-xlnx的單調(diào)增區(qū)間(0,1);單調(diào)減區(qū)間(1,+∞);
(Ⅱ)實(shí)數(shù)0<a<1時(shí),,
∴g′(x)=+ax-1==,
由g′(x)=0得x1=-1,x2=1,
1、若0<-1<1,a>0即<a<1,0<x1<x2,
x(0,x1x1(x1,x2x2(x2,+∞)
f′(x)+0-0+
f(x)遞增極大值遞減極小值遞增
此時(shí)g(x)的最小值為x=1,極大值點(diǎn)x=-1,
2、若-1=1,a>0,即a=,x1=x2=1,則g′(x)≥0,g(x)在(0,+∞)上為單調(diào)增區(qū)間,無(wú)極值點(diǎn),
3、若-1>1,a>0即0<a<,x1>x2=1,
x(0,x2x2(x2,x1x1(x1,+∞)
f′(x)+0-0+
f(x)遞增極大值遞減極小值遞增
此時(shí)g(x)的極大值點(diǎn)為x=1,極小值點(diǎn)x=-1,
綜上:當(dāng)<a<1時(shí),g(x)的極值點(diǎn)為x=1,極大值點(diǎn)x=-1;
當(dāng)a=時(shí),g(x)無(wú)極值點(diǎn)為x=1,極小值點(diǎn)x=
當(dāng)0<a時(shí),g(x)的極大值點(diǎn)為x=1,極小值點(diǎn)x=-1;
分析:(Ⅰ)把f(x)代入h(x),對(duì)f(x)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)研究h(x)的單調(diào)區(qū)間,注意函數(shù)的定義域;
(Ⅱ)已知實(shí)數(shù)0<a<1,對(duì)g(x)進(jìn)行求導(dǎo),令g′(x)=0,得出極值點(diǎn),這時(shí)方程g′(x)=0的兩個(gè)根大小不一樣,需要進(jìn)行討論,然后再確定極大值和極小值點(diǎn);
點(diǎn)評(píng):本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減,還考查了分類(lèi)討論的思想,這是高考的熱點(diǎn)問(wèn)題;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24).
(1)求f(x);
(2)若不等式(
1
a
x+(
1
b
x-m≥0在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=b•ax(a>0且a≠1),且f(k)=8f(k-3)(k≥4,k∈N*).
(1)若b=8,求f(1)+f(2)+…+f(n)(n∈N*);
(2)若f(1)、16、128依次是某等差數(shù)列的第1項(xiàng),第k-3項(xiàng),第k項(xiàng),試問(wèn):是否存在正整數(shù)n,使得f(n)=2(n2-100)成立,若存在,請(qǐng)求出所有的n及b的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過(guò)A(1,
1
6
),B(3,
1
24
)

(1)試確定f(x)的解析式;
(2)若不等式(
1
a
)x+(
1
b
)x
≤m在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=b(x+1)lnx-x+1,斜率為l的直線(xiàn)與函數(shù)f(x)的圖象相切于(1,0)點(diǎn).
(Ⅰ)求h(x)=f(x)-xlnx的單調(diào)區(qū)間;
(Ⅱ)當(dāng)實(shí)數(shù)0<a<1時(shí),討論g(x)=f(x)-(a+x)lnx+
1
2
a
x
2
 
的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24),
(1)試確定f(x);
(2)若不等式(
1
a
) x+(
1
b
) x-m≤0在x∈[0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案