(本題滿分12分)如圖,在多面體ABCDE中,,,是邊長為2的等邊三角形,,CD與平面ABDE所成角的正弦值為.

(1)在線段DC上是否存在一點F,使得,若存在,求線段DF的長度,若不存在,說明理由;

(2)求二面角的平面角的余弦值.

 

【答案】

(Ⅰ)存在F為CD中點,DF=時,使得(Ⅱ)

【解析】

試題分析:(Ⅰ)取AB的中點G,連結(jié)CG,則,

,可得,所以,

所以,CG=,故CD=  ……2分

取CD的中點為F,BC的中點為H,因為,所以為平行四邊形,得,………………………………4分

平面  ∴

存在F為CD中點,DF=時,使得……6分

(Ⅱ)如圖建立空間直角坐標系,則、        

、,從而, 

,。

為平面的法向量,

可以取 ……………………8分

為平面的法向量,

  ……10分

因此,,…………11分

故二面角的余弦值為……………12分

考點:本題考查了空間中的線面關系

點評:求解和證明立體幾何問題一方面可以直接利用幾何方法,通過證明或找到線面之間的關系,依據(jù)判定定理或性質(zhì)進行證明求解.但是本法的難在證明線面關系,難在作角、找角.空間向量方法是證明垂直、平行、求角的好方法,因其避開了“做,找”,所以其應用的難度大大的降低了.利用空間向量法證明垂直,即證明向量的數(shù)量積等于0;若求二面角則通過兩個半平面的法向量的夾角進行求解判斷。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. 的中點.

(1)當時,求平面與平面的夾角的余弦值;

(2)當為何值時,在棱上存在點,使平面?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,中點,上一個動點.

(Ⅰ)確定點的位置,使得;

(Ⅱ)當時,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

 ⑴求異面直線PD與AE所成角的大;

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大。.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題

 

(本題滿分12分)

如圖3,在圓錐中,已知的直徑的中點.

(I)證明:

(II)求直線和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題

(本題滿分12分)

如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。

   (1)求證:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

 

查看答案和解析>>

同步練習冊答案