(本題滿分12分)如圖,在多面體ABCDE中,,,是邊長為2的等邊三角形,,CD與平面ABDE所成角的正弦值為.
(1)在線段DC上是否存在一點F,使得,若存在,求線段DF的長度,若不存在,說明理由;
(2)求二面角的平面角的余弦值.
(Ⅰ)存在F為CD中點,DF=時,使得(Ⅱ)
【解析】
試題分析:(Ⅰ)取AB的中點G,連結(jié)CG,則,
又,可得,所以,
所以,CG=,故CD= ……2分
取CD的中點為F,BC的中點為H,因為,,所以為平行四邊形,得,………………………………4分
平面 ∴
存在F為CD中點,DF=時,使得……6分
(Ⅱ)如圖建立空間直角坐標系,則、、
、,從而,
,。
設為平面的法向量,
則可以取 ……………………8分
設為平面的法向量,
則取 ……10分
因此,,…………11分
故二面角的余弦值為……………12分
考點:本題考查了空間中的線面關系
點評:求解和證明立體幾何問題一方面可以直接利用幾何方法,通過證明或找到線面之間的關系,依據(jù)判定定理或性質(zhì)進行證明求解.但是本法的難在證明線面關系,難在作角、找角.空間向量方法是證明垂直、平行、求角的好方法,因其避開了“做,找”,所以其應用的難度大大的降低了.利用空間向量法證明垂直,即證明向量的數(shù)量積等于0;若求二面角則通過兩個半平面的法向量的夾角進行求解判斷。
科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點.
(1)當時,求平面與平面的夾角的余弦值;
(2)當為何值時,在棱上存在點,使平面?
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,為中點,為上一個動點.
(Ⅰ)確定點的位置,使得;
(Ⅱ)當時,求二面角的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題
(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.
⑴求異面直線PD與AE所成角的大;
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大。.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題
(本題滿分12分)
如圖3,在圓錐中,已知的直徑的中點.
(I)證明:
(II)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題
(本題滿分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com