精英家教網 > 高中數學 > 題目詳情
設拋物線y2=2px(p>0)的焦點為F,準線為l,點A(0,2),線段FA與拋物線交于點B,過B作l的垂線,垂足為M.若AM⊥MF,則p=
 
考點:拋物線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:由拋物線的定義可得BM=BF,又 AM⊥MF,根據直角三角形斜邊的中點是外心可得故B為線段AF的中點,求出B的坐標代入拋物線方程求得p值.
解答: 解:由拋物線的定義可得BM=BF,F(xiàn)(
p
2
,0),
又 AM⊥MF,故B為線段AF的中點,
∴B(
p
4
,1),
代入拋物線y2=2px(p>0)得,1=2p×
p
4
,
∴p=
2

故答案為:
2
點評:本題考查拋物線的定義、標準方程,以及簡單性質的應用,判斷B為線段AF的中點,是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1)
(1)當
a
b
時,求tanx的值;
(2)求f(x)=
a
b
+
b
2
的最大值,并寫出函數f(x)取得最大值時自變量x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數,且f(1)=1,若m,n∈[-1,1],m+n≠0時,有
f(m)+f(n)
m+n
>0.
(Ⅰ)證明f(x)在[-1,1]上是增函數;
(Ⅱ)解不等式f(x2-1)+f(3-3x)<0
(Ⅲ)若f(x)≤t2-2at+1對?x∈[-1,1],a∈[-1,1]恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

某單位職工舉行義務獻血活動,在體檢合格的人中,O型血共有18人,A型血共有10人,B型血共有8人,AB型血共有3人.從四種血型的人中各選1人去獻血,不同的選法有
 
種.

查看答案和解析>>

科目:高中數學 來源: 題型:

下面有六個命題:
①函數y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z};
③在同一坐標系中,函數y=sinx的圖象和函數y=x的圖象有三個公共點;
④函數y=tanx在其定義域上是單調遞增函數;
⑤函數y=sin(x-
π
2
)是偶函數;
⑥若
a
b
=0,則
a
=
0
b
=
0
;
其中真命題的序號是
 
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:

比較大小:
10
-
7
 
5
-
2

查看答案和解析>>

科目:高中數學 來源: 題型:

計算∫
 
3
0
(2x-ex)dx=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合P={y|y≥1},Q={x|y=ln(x-2)},則P∩Q=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

連續(xù)投擲兩次骰子得到的點數分別為m,n.向量
a
=(m,n)與向量
b
=(1,0)的夾角為θ,則θ∈(0,
π
4
)的概率為
 

查看答案和解析>>

同步練習冊答案