【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析;(2).

【解析】分析求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間利用函數(shù)的單調(diào)性可求出函數(shù)的極值;(2) 上單調(diào)遞增等價(jià)于上恒成立,求得導(dǎo)數(shù)和單調(diào)區(qū)間,討論與極值點(diǎn)的關(guān)系,結(jié)合單調(diào)性,運(yùn)用參數(shù)分離和解不等式可得范圍.

詳解:(1)當(dāng)時(shí):的定義域?yàn)?/span>

,得

當(dāng)時(shí),上單調(diào)遞增;

當(dāng)時(shí),,上單調(diào)遞減;

當(dāng)時(shí),的極大值為,無(wú)極小值.

(2)

上單調(diào)遞增

上恒成立,

只需上恒成立

上恒成立

,則:

①若時(shí)

上恒成立

上單調(diào)遞減

,

這與矛盾,舍去

②若時(shí)

當(dāng)時(shí),,上單調(diào)遞減;

當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),有極小值,也是最小值,

綜上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】駐馬店市政府委托市電視臺(tái)進(jìn)行“創(chuàng)建森林城市”知識(shí)問(wèn)答活動(dòng),市電視臺(tái)隨機(jī)對(duì)該市15~65歲的人群抽取了人,繪制出如圖1所示的頻率分布直方圖,回答問(wèn)題的統(tǒng)計(jì)結(jié)果如表2所示.

(1)分別求出的值;

(2)從第二、三、四、五組回答正確的人中用分層抽樣的方法抽取7人,則從第二、三、四、五組每組回答正確的人中應(yīng)各抽取多少人?

(3)在(2)的條件下,電視臺(tái)決定在所抽取的7人中隨機(jī)選2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第二組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過(guò)點(diǎn)C作⊙O的切線,交BD的延長(zhǎng)線于點(diǎn)P,交AD的延長(zhǎng)線于點(diǎn)E.

(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣教育局為了檢查本縣甲、乙兩所學(xué)校的學(xué)生對(duì)安全知識(shí)的學(xué)習(xí)情況,在這兩所學(xué)校進(jìn)行了安全知識(shí)測(cè)試,隨機(jī)在這兩所學(xué)校各抽取20名學(xué)生的考試成績(jī)作為樣本,成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀,統(tǒng)計(jì)結(jié)果如下圖:

甲校 乙校

(1)從乙校成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)恰有一個(gè)落在內(nèi)的概率;

(2)由以上數(shù)據(jù)完成下面列聯(lián)表,并回答能否在犯錯(cuò)的概率不超過(guò)0.1的前提下認(rèn)為學(xué)生的成績(jī)與兩所學(xué)校的選擇有關(guān)。

甲校

乙校

總計(jì)

優(yōu)秀

不優(yōu)秀

總計(jì)

參考數(shù)據(jù)

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

span>3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓圓心坐標(biāo)為點(diǎn)為坐標(biāo)原點(diǎn),軸、軸被圓截得的弦分別為、.

(1)證明:的面積為定值;

(2)設(shè)直線與圓交于兩點(diǎn),若,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)圖象向左平移 個(gè)單位后,得到函數(shù)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱,則函數(shù)g(x)=cos(x+φ)在[﹣ , ]上的最小值是( )
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,側(cè)面底面.

(1)求證:平面平面

(2)若,且二面角等于,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20 , 接下來(lái)的兩項(xiàng)是20 , 21 , 再接下來(lái)的三項(xiàng)是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.440
B.330
C.220
D.110

查看答案和解析>>

同步練習(xí)冊(cè)答案