設(shè)函數(shù),若函數(shù)f(x)+f′(x)是奇函數(shù),則θ=   
【答案】分析:先求出函數(shù)的導(dǎo)數(shù),利用輔助角公式,求出化簡(jiǎn)f(x)+f′(x),再根據(jù)函數(shù)f(x)+f′(x)是奇函數(shù),當(dāng)x=0時(shí),函數(shù)值等于0,得到關(guān)于θ的方程,解出θ,注意θ的取值范圍.
解答:解:∵,

則函數(shù)f(x)+f′(x)為
y==2
∵函數(shù)f(x)+f′(x)是奇函數(shù),∴2=0
解得,又∵0<θ<π
∴θ=
故答案為
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)與三角函數(shù)公式綜合應(yīng)用,求角的大小,屬于綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)一模)設(shè)函數(shù)f(x)=
13
x3
-ax(a>0),g(x)=bx2+2b-1.
(Ⅰ)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值;
(Ⅱ)當(dāng)a=1-2b時(shí),若函數(shù)f(x)+g(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅲ)當(dāng)a=1-2b=1時(shí),求函數(shù)f(x)+g(x)在區(qū)間[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)在R內(nèi)有定義,對(duì)于給定的正數(shù)k,定義函數(shù)fk(x)=
f(x),f(x)>k
k,f(x)≤k.
,若函數(shù)f(x)=log3|x|,則當(dāng)k=
1
3
時(shí),函數(shù)fk(x)的單調(diào)減區(qū)間為
(-∞,-
33
]
(-∞,-
33
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市奉賢區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù),其中0<ω<2;
(Ⅰ)若f(x)的最小正周期為π,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象的一條對(duì)稱(chēng)軸為,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省咸陽(yáng)市高考數(shù)學(xué)模擬試卷1(文科)(解析版) 題型:解答題

(考生注意:只能從下列A、B、C三題中選做一題,如果多做,則按第一題評(píng)閱記分)
A.(坐標(biāo)系與參數(shù)方程選做題)曲線(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個(gè)數(shù)為   
B.(不等式選講選做題)設(shè)函數(shù),若函數(shù)f(x)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是   
C.(幾何證明選講選做題)如圖,從圓O外一點(diǎn)A引圓的切線AD和割線ABC,已知AC=6,圓O的半徑為3,圓心O到AC的距離為,則AD=   

查看答案和解析>>

同步練習(xí)冊(cè)答案