【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,是上異于,的點.
(1)證明:平面平面;
(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.
【答案】(1)見解析
(2)
【解析】分析:(1)先證平面CMD,得,再證,進而完成證明。
(2)先建立空間直角坐標系,然后判斷出的位置,求出平面和平面的法向量,進而求得平面與平面所成二面角的正弦值。
詳解:(1)由題設知,平面CMD⊥平面ABCD,交線為CD.因為BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.
因為M為上異于C,D的點,且DC為直徑,所以 DM⊥CM.
又 BCCM=C,所以DM⊥平面BMC.
而DM平面AMD,故平面AMD⊥平面BMC.
(2)以D為坐標原點,的方向為x軸正方向,建立如圖所示的空間直角坐標系Dxyz.
當三棱錐MABC體積最大時,M為的中點.
由題設得,
設是平面MAB的法向量,則
即
可取.
是平面MCD的法向量,因此
,
,
所以面MAB與面MCD所成二面角的正弦值是.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l經(jīng)過點A(﹣1,0),其傾斜角是α,以原點O為極點,以x軸的非負半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設曲線C的極坐標方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直線l和曲線C有公共點,求傾斜角α的取值范圍;
(Ⅱ)設B(x,y)為曲線C任意一點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,則a2016=( )
A.1
B.﹣1
C.2+
D.2﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A、B、C為⊙O上三點,B為 的中點,P為AC延長線上一點,PQ與⊙O相切于點Q,BQ與AC相交于點D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE= BC,PB⊥AE.
(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由無理數(shù)引發(fā)的數(shù)學危機一直延續(xù)到19世紀.直到1872年,德國數(shù)學家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù)(史稱戴德金分割),并把實數(shù)理論建立在嚴格的科學基礎上,才結束了無理數(shù)被認為“無理”的時代,也結束了持續(xù)2000多年的數(shù)學史上的第一次大危機.所謂戴德金分割,是指將有理數(shù)集劃分為兩個非空的子集與,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,不可能成立的是( )
A. 沒有最大元素, 有一個最小元素 B. 沒有最大元素, 也沒有最小元素
C. 有一個最大元素, 有一個最小元素 D. 有一個最大元素, 沒有最小元素
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正四棱錐中, 分別是
的中點,動點在線段上運動時,下列結論中不恒成立的是( 。
A. 與異面 B. ∥面
C. ⊥ D. ∥
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com