如圖,P是圓O外一點,過P引圓O的兩條割線PAB、PCD,PA=AB=
5
,CD=3,則PC=
 
考點:與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:根據(jù)圓的兩條割線,根據(jù)割線定理寫出關(guān)系式,根據(jù)所給的三條線段的長度,得到要用的線段的長度,代入關(guān)系式,得到關(guān)于PC的一元二次方程,解方程得到結(jié)果,舍去不合題意的結(jié)果.
解答: 解:∵過P引圓O的兩條割線PAB、PCD,
∴PA•PB=PC•PD,
∵PA=AB=
5
,CD=3,
5
•2
5
=PC•(PC+3)
∴PC2+3PC-10=0,
∴(PC-2)(PC+5)=0
∴PC=2或PC=-5(舍去)
故答案為:2.
點評:本題考查圓的切割線定理,考查一元二次方程的解法,是一個簡單的題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi)與復數(shù)z=
2i
1+i
所對應的點關(guān)于實軸對稱的點為A,則A對應的復數(shù)為(  )
A、1+iB、1-i
C、-1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,則“a=-1”是“a2-1+(a-1)i為純虛數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某廣場中間有一塊扇形綠地OAB,其中O為扇形OAB所在圓的圓心,∠AOB=60°,扇形綠地OAB的半徑為r.廣場管理部門欲在綠地上修建觀光小路:在
AB
上選一點C,過C修建與OB平行的小路CD,與OA平行的小路CE,且所修建的小路CD與CE的總長最長.
(1)設(shè)∠COD=θ,試將CD與CE的總長s表示成θ的函數(shù)s=f(θ);
(2)當θ取何值時,s取得最大值?求出s的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面區(qū)域{(x,y)||x|≤1,|y|≤1}上恒有ax-2by≤2,則動點P(a,b)所形成平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某次演唱比賽,需要加試文化科學素質(zhì),每位參賽選手需加答3個問題,組委會為每位選手都備有10道不同的題目可供選擇,其中有5道文史類題目,3道科技類題目,2道體育類題目,測試時,每位選手從給定的10道題中不放回地隨機抽取3次,每次抽取一道題,回答完該題后,再抽取下一道題目作答.
(Ⅰ)求某選手第二次抽到的不是科技類題目的概率;
(Ⅱ)求某選手抽到體育類題目數(shù)ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
2
sin(2x+
π
4

(1)求f(
π
6
)的值;
(2)求f(x)的最小正周期和單調(diào)遞增區(qū)間.
(3)若sinα=
3
5
,且α∈(
π
2
,π),求f(
α
2
+
π
24
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)學趣味知識培訓活動中,甲、乙兩名學生的5次培訓成績?nèi)缜o葉圖所示:
(Ⅰ)從甲、乙兩人中選擇1人參加數(shù)學趣味知識競賽,你會選哪位?請運用統(tǒng)計學的知識說明理由;
(Ⅱ) 從乙的5次培訓成績中隨機選擇2個,記被抽到的分數(shù)超過110分的個數(shù)為ξ,試求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用回歸分析的方法研究兩個具有線性相關(guān)關(guān)系的變量時,下列說法正確的是:
 

①相關(guān)系數(shù)r滿足|r|≤1,而且|r|越接近1,變量間的相關(guān)程度越大,|r|越接近0,變量間的相關(guān)程度越;
②可以用R2來刻畫回歸效果,對于已獲取的樣本數(shù)據(jù),R2越小,模型的擬合效果越好;
③如果殘差點比較均勻地落在含有x軸的水平的帶狀區(qū)域內(nèi),那么選用的模型比較合適;這樣的帶狀區(qū)域越窄,回歸方程的預報精度越高;
④不能期望回歸方程得到的預報值就是預報變量的精確值.

查看答案和解析>>

同步練習冊答案