解:(1)∵曲線y=f(x)過原點(diǎn),∴d=0.
由f(x)=ax
3+bx
2+cx+d,得:f'(x)=3ax
2+2bx+c,
又x=0是f(x)的極值點(diǎn),∴f'(0)=0,∴c=0,
∵過點(diǎn)P(-1,2)的切線l的斜率為f'(-1)=3a-2b,
由
,得:
,解得:
.
故f(x)=x
3+3x
2;
(2)f'(x)=3x
2+6x=3x(x+2),
令f'(x)>0,即x(x+2)>0,∴x>0或x<-2
∴f(x)的增區(qū)間為(-∞,-2]和[0,+∞).
∵f(x)在區(qū)間[2m-1,m+1]上是增函數(shù),∴[2m-1,m+1]⊆(-∞,-2]或[2m-1,m+1]⊆[0,+∞);
∴
或
.
解得:m≤-3或
;
(3)由(2)知,函數(shù)f(x)在[-1,0]上為減函數(shù),在(0,1]上為增函數(shù).
∵f(0)=0,f(-1)=2,f(1)=4,∴f(x)在區(qū)間[-1,1]上的最大值M為4,最小值N為0,
故對(duì)任意x
1,x
2∈[-1,1],有|f(x
1)-f(x
2)|≤M-N=4-0=4,
要使對(duì)任意x
1,x
2∈[-1,1],不等式|f(x
1)-f(x
2)|≤m恒成立,則m≥4.
所以,m最小值為4.
分析:(1)由函數(shù)圖象過原點(diǎn)求出d的值,由f
′(0)=0求出c的值,再由曲線y=f(x)在P(-1,2)處的切線l的斜率是-3,列關(guān)于a,b的方程組,解方程組求解a,b的值,則函數(shù)解析式可求;
(2)求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的符號(hào)判斷函數(shù)的單調(diào)區(qū)間,根據(jù)y=f(x)在區(qū)間[2m-1,m+1]上是增函數(shù),說明區(qū)間[2m-1,m+1]是求出的函數(shù)增區(qū)間的子集,由集合的關(guān)系分類列關(guān)于m的不等式組,則m的取值范圍可求;
(3)利用函數(shù)的單調(diào)性求出函數(shù)f(x)在區(qū)間[-1,1]內(nèi)的最值,對(duì)任意x
1,x
2∈[-1,1],|f(x
1)-f(x
2)|恒小于等于最大值與最小值差的絕對(duì)值,由此可以求得使不等式|f(x
1)-f(x
2)|≤m恒成立的m的最小值.
點(diǎn)評(píng):本題考查了函數(shù)解析式的常用求法,考查了函數(shù)在某點(diǎn)處取得極值的條件,注意的是極值點(diǎn)處的導(dǎo)數(shù)等于0,考查了函數(shù)在某點(diǎn)處切線的斜率與該點(diǎn)處導(dǎo)數(shù)的關(guān)系,函數(shù)在某一區(qū)間內(nèi)任意兩點(diǎn)的函數(shù)值的差的絕對(duì)值,一定小于等于函數(shù)在該區(qū)間內(nèi)最大值與最小值差的絕對(duì)值.此題是中檔題.