若不等式,對滿足的一切實(shí)數(shù)、恒成立,則實(shí)數(shù)a的取值范圍               

 

【答案】

a≥4或a≤-2

【解析】由柯西不等式9=(12+22+22)•(x2+y2+z2)≥(1•x+2•y+2•z)2,

即x+2y+2z≤3,當(dāng)且僅當(dāng),即時,取得最大值3.∵不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,

只需|a-1|≥3,解得a-1≥3或a-1≤-3,∴a≥4或∴a≤-2.

即實(shí)數(shù)的取值范圍是(-∞,-2222∪1114,+∞).

故答案為:a≥4或a≤-2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•連云港一模)若不等式|a-1|≥x+2y+2z對滿足x2+y2+z2=1的一切實(shí)數(shù)x、y、z恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)如果一個數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的平方差是同一個常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(Ⅰ)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,求證:該數(shù)列是常數(shù)列;
(Ⅱ)已知數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足an2=2n+1bn.若不等式2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,2
Sn
是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A1,A2,A3,…,An為集合M={1,2,3,…,n}的n個不同的子集,對于任意不大于n的正整數(shù)i,j滿足下列條件:
①i∉Ai,且每一個Ai至少含有三個元素;
②i∈Aj的充要條件是j∉Aj(其中i≠j).
為了表示這些子集,作n行n列的數(shù)表(即n×n數(shù)表),規(guī)定第i行第j列數(shù)為:aij=
0   當(dāng)i∉AJ
1        當(dāng)i∈AJ時  

(1)該表中每一列至少有多少個1;若集合M={1,2,3,4,5,6,7},請完成下面7×7數(shù)表(填符合題意的一種即可);
(2)用含n的代數(shù)式表示n×n數(shù)表中1的個數(shù)f(n),并證明n≥7;
(3)設(shè)數(shù)列{an}前n項(xiàng)和為f(n),數(shù)列{cn}的通項(xiàng)公式為:cn=5an+1,證明不等式:
5cmn
-
cmcn
>1對任何正整數(shù)m,n都成立.(第1小題用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)一模)已知數(shù)列{an}各項(xiàng)均為正數(shù),前n項(xiàng)和Sn滿足Sn=
1
2
a
2
n
+
1
2
an-3
,(n∈N*),數(shù)列{bn}滿足:點(diǎn)列An(n,bn)在直線2x-y+1=0
(Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)記Tn為數(shù)列{cn}的前n項(xiàng)和,且cn=bn2an-2,求Tn;
(Ⅲ)若對任意的n∈N*不等式
an+1
(1+
1
b1+1
)•(1+
1
b2+1
)…(1+
1
bn+1
)
-
an
n+2+an
≤0
恒成立,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案