分析 (1求出函數(shù)的導數(shù),利用切線與已知直線垂直,列出方程,即可求解a的值.
(2)求出g'(x),列出求解函數(shù)的極值點的方程,利用韋達定理,化簡g(x1)-g(x2),構造新函數(shù),通過新函數(shù)的導數(shù)求解函數(shù)的最值.
解答 解:(1)直線x+2y=0的斜率為-$\frac{1}{2}$;
故在x=1處的切線的斜率為2;
f′(x)=1+$\frac{a}{x}$,
故f′(1)=1+a=2;
解得,a=1.
(2)$g(x)=f(x)+\frac{1}{2}{x^2}-bx$=x+lnx+$\frac{1}{2}$x2-bx,x>0
∴g′(x)=1+$\frac{1}{x}$+x-b=$\frac{{x}^{2}-(b-1)x+1}{x}$
令g′(x)=0,得x2-(b-1)x+1=0,∴x1+x2=b-1,x1x2=1,
∴g(x1)-g(x2)=(x1+lnx1+$\frac{1}{2}$x12-bx1)-(x2+lnx2+$\frac{1}{2}$x22-bx2)=ln$\frac{{x}_{1}}{{x}_{2}}$+$\frac{1}{2}$(x12-x22)-(b-1)(x1-x2)=ln$\frac{{x}_{1}}{{x}_{2}}$+$\frac{1}{2}$($\frac{{x}_{1}}{{x}_{2}}$-$\frac{{x}_{2}}{{x}_{1}}$),
∵0<x1<x2,設t=$\frac{{x}_{1}}{{x}_{2}}$,(0<t<1)
設h(x)=lnt-$\frac{1}{2}$(t-$\frac{1}{t}$),
則h′(x)=$\frac{1}{t}$-$\frac{1}{2}$(1+$\frac{1}{{t}^{2}}$)=-$\frac{(t-1)^{2}}{2{t}^{2}}$<0
∴(x1+x2)2=$\frac{({x}_{1}+{x}_{2})^{2}}{{x}_{1}{x}_{2}}$=t+$\frac{1}{t}$+2≥$\frac{100}{9}$
∵0<t<1,
∴9t2-82t+9≥0
解0<$\frac{1}{9}$≤t,
∴h(t)≥h($\frac{1}{9}$)=ln$\frac{1}{9}$-$\frac{1}{2}$($\frac{1}{9}$-9)=$\frac{40}{9}$-ln9
∴g(x1)-g(x2)的最小值$\frac{40}{9}$-ln9
點評 本題考查函數(shù)的導數(shù)的應用,函數(shù)的極值的求法韋達定理以及構造法的應用,考查分析問題解決問題的能力,轉化思想的應用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | sin2x | B. | cosx | C. | sin|x| | D. | |sinx| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com