6.已知頂點在原點,焦點在x軸上的拋物線過點(1,2)
(Ⅰ)求拋物線的標準方程;
(Ⅱ)直線y=x-4與拋物線相交于AB兩點,求證:OA⊥OB.

分析 (Ⅰ)設拋物線標準方程為y2=2px,將(1,2)代入即可求得p的值,即可求得拋物線的標準方程;
(Ⅱ)將直線y=x-4代入拋物線方程,求得x1+x2,x1•x2,代入直線方程求得y1•y2,由${k_{OA}}•{k_{OB}}=\frac{{y{\;}_1•y{\;}_2}}{{{x_1}•{x_2}}}=\frac{-16}{16}=-1$,即可OA⊥OB.

解答 解:(Ⅰ)設拋物線標準方程為y2=2px…(2分)
∵拋物線過點(1,2),
∴4=2p,解得:p=2  …(4分)
∴y2=4x…(5分)
(Ⅱ)證明:由題意可知直線AB斜率是1,設A(x1,y1),B(x2,y2
,$由\left\{\begin{array}{l}y=x-4\\{y^2}=4x\end{array}\right.消去y得{x^2}-12x+16=0$,
∴由韋達定理可知:x1+x2=12,x1•x2=16…(8分)
∴y1•y2=(x1-4)(x2-4)=x1•x2-4(x1+x2)+16=16-4×12+16=-16…(10分)
∴${k_{OA}}•{k_{OB}}=\frac{{y{\;}_1•y{\;}_2}}{{{x_1}•{x_2}}}=\frac{-16}{16}=-1$,
∴OA⊥OB …(12分)

點評 本題考查拋物線的標準方程,直線與拋物線的位置關系,考查韋達定理及直線垂直的充要條件,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知命題p:函數(shù)f(x)=lg(x2+ax+1)的定義域為R,命題q:函數(shù)g(x)=lg(x2+ax)在[1,+∞)上單調(diào)遞增,若p∧q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,函數(shù)$g(x)=f(x)+\frac{1}{2}{x^2}-bx$.
(1)求實數(shù)a的值;
(2)設x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點,若$b≥\frac{13}{3}$,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在復平面內(nèi),復數(shù)$\frac{2}{1+i}$-2對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若f(x)=x4+3x3+x+1,用秦九韶算法計算f(π)時,需要乘法m次,加法n次,則m+n=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知復數(shù)$ω=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$
(1)分別計算ω2 和$\frac{1}{1+ω}$的值;
(2)在復平面內(nèi),復數(shù)ω對應的向量為$\overrightarrow{OA}$,復數(shù)ω2對應的向量為$\overrightarrow{OB}$.求向量$\overrightarrow{AB}$對應的復數(shù)z及復數(shù)z的模.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設全集A={1,2,3},B={1,3,5,6,7},則A∩B=( 。
A.{1,3}B.{2,4,5,6,7,8}C.{5,6,7}D.{4,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知兩個動點A、B和一個定點M(x0,y0)均在拋物線C:y2=2px(p>0)上(A、B與M不重合).設F為拋物線的焦點,Q為其對稱軸上一點,若$(\overrightarrow{QA}+\frac{1}{2}\overrightarrow{AB})•\overrightarrow{AB}=0$,且$|\overrightarrow{FA}|$、$|\overrightarrow{FM}|$、$|\overrightarrow{FB}|$成等差數(shù)列.
(Ⅰ)求$\overrightarrow{OQ}$的坐標(可用x0、y0和p表示);
(Ⅱ)若$|\overrightarrow{OQ}|\;=3$,$|\overrightarrow{FM}|\;=\frac{5}{2}$,A、B兩點在拋物線C的準線上的射影分別為A1、B1,求四邊形ABB1A1面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓C:(x-1)2+(y-1)2=1和點M(2,3).
(1)過點M向圓C引切線l,求直線l的方程;
(2)求以點M為圓心,且被直線y=2x+4截得的弦長為4的圓M的方程.

查看答案和解析>>

同步練習冊答案