函數(shù)f(x)=
1
3
e3x+me2x+(2m+1)ex+1有兩個(gè)極值點(diǎn),則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù),函數(shù)f(x)=
1
3
e3x+me2x+(2m+1)ex+1有兩個(gè)極值點(diǎn),可得f′(x)=0有兩個(gè)根,令t=ex,則t2+2mt+(2m+1)=0有兩個(gè)不等的正根,即可求出實(shí)數(shù)m的取值范圍.
解答: 解:函數(shù)f(x)=
1
3
e3x+me2x+(2m+1)ex+1,
則f′(x)=[e2x+2mex+(2m+1)]ex,
∵函數(shù)f(x)=
1
3
e3x+me2x+(2m+1)ex+1有兩個(gè)極值點(diǎn),
∴f′(x)=0有兩個(gè)根,
令t=ex,則t2+2mt+(2m+1)=0有兩個(gè)不等的正根,
△>0
-2m>0
2m+1>0
,
∴m<1-
2
或m>1+
2

故答案為:m<1-
2
或m>1+
2
點(diǎn)評(píng):本題考查實(shí)數(shù)m的取值范圍,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查韋達(dá)定理,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇1,2],則f(2x)的定義域?yàn)?div id="rfbnnf3" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列幾個(gè)命題
①函數(shù)f(x)=sin|x|是周期為π的偶函數(shù);
②A=Q,B=Q,f:x→
1
x
,這是一個(gè)從集合A到集合B的映射;
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1];
④若△ABC為銳角三角形,則點(diǎn)P(sinA-cosB,cosC-sinB)必在第四象限;
⑤一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中你認(rèn)為正確的全部有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)為奇函數(shù),當(dāng)x>0時(shí),f(x)=2x+1,則當(dāng)x<0時(shí),f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(a,b)是直線y=-x上的點(diǎn),若對(duì)曲線y=
1
x
(x>0)上的任意一點(diǎn)Q恒有|PQ|≥3,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=
2
,an+1=
1+an
1-an
,則{an}的前10項(xiàng)的和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(2-x)|x-6|在區(qū)間(-∞,a]上取得最小值-4,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l和平面α內(nèi)兩條直線m,n,則“l(fā)⊥m,l⊥n”是“l(fā)⊥平面α”的
 
條件(填“充分不必要”,“必要不充分”,“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)O為正方體ABCD-A1B1C1D1的中心,點(diǎn)E為面B1BCC1的中心,點(diǎn)F為B1C1的中點(diǎn),則空間四邊形D1OEF在該正方體的面上的正投影可能是(  )
A、①③④B、②③④
C、①②④D、①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案