直線與雙曲線C:交于兩點(diǎn),是線段的中 點(diǎn),若是原點(diǎn))的斜率的乘積等于,則此雙曲線的離心率為        ___

試題分析:設(shè)代入雙曲線得兩式相減得變形為 

點(diǎn)評(píng):直線與圓錐曲線相交的中點(diǎn)弦問題常用點(diǎn)差法,即設(shè)出交點(diǎn)坐標(biāo)代入曲線方程,兩式作差,求離心率關(guān)鍵是找到關(guān)于的齊次方程或不等式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

知圓柱的底面半徑為2,高為3,用一個(gè)平面去截,若所截得的截面為橢圓,則橢圓的離心率的取值范圍為( 。
A.B.(0,C.D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,其左、右焦點(diǎn)分別為、,短軸長為,點(diǎn)在橢圓上,且滿足的周長為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),試問在x軸上是否存在一個(gè)定點(diǎn)M使恒為定值?若存在求出該定值及點(diǎn)M的坐標(biāo),若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法中,正確的有        
①若點(diǎn)是拋物線上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離是
②設(shè)、為雙曲線的兩個(gè)焦點(diǎn),為雙曲線上一動(dòng)點(diǎn),,則的面積為;
③設(shè)定圓上有一動(dòng)點(diǎn),圓內(nèi)一定點(diǎn),的垂直平分線與半徑的交點(diǎn)為點(diǎn),則的軌跡為一橢圓;
④設(shè)拋物線焦點(diǎn)到準(zhǔn)線的距離為,過拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則、成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請(qǐng)問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請(qǐng)求出滿足題意的所有直線方程,若不存在請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的左、右焦點(diǎn)分別為,為橢圓上異于長軸端點(diǎn)的一點(diǎn),,△的內(nèi)心為I,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線和點(diǎn),為拋物線上的點(diǎn),則滿足的點(diǎn)有( )個(gè)。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的終邊經(jīng)過點(diǎn)A,且點(diǎn)A在拋物線的準(zhǔn)線上,則( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左焦點(diǎn)F為圓的圓心,且橢圓上的點(diǎn)到點(diǎn)F的距離最小值為。
(I)求橢圓方程;
(II)已知經(jīng)過點(diǎn)F的動(dòng)直線與橢圓交于不同的兩點(diǎn)A、B,點(diǎn)M(),證明:為定值。

查看答案和解析>>

同步練習(xí)冊(cè)答案