【題目】已過拋物線:的焦點作直線交拋物線于,兩點,以,兩點為切點作拋物線的切線,兩條直線交于點.
(1)當直線平行于軸時,求點的坐標;
(2)當時,求直線的方程.
【答案】(1),(2)
【解析】
(1)依題的方程為,聯(lián)立拋物線方程可得,,利用導(dǎo)數(shù)求出
在,處的切線,再聯(lián)立切線方程即可求出點坐標.
(2)設(shè)的方程為,,,利用切線方程聯(lián)系即可求出.
法一:根據(jù)弦長公式可得,, ,再根據(jù),將代入即可求出結(jié)果.
法二:依題:,化簡可得,結(jié)合,進而求出結(jié)果.得
(1)依題可知,當直線平行于軸時,則的方程為,
所以可得,,又;
所以在,處的切線分別為:,,即,,
聯(lián)立兩切線可得,所以.
(2)設(shè)的方程為,,,
則聯(lián)立有,所以,
在處的切線為:,
同理可得,在處切線:,
聯(lián)立有:,即點.
法一:,
同理可得:,
所以,又因為,
所以解得,所以,得,或,.
所以直線方程為:.
法二:
依題:,
解得,結(jié)合得,或,.
所以直線方程為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機選取了名用戶,統(tǒng)計出年齡分布和用戶付費金額(金額為整數(shù))情況如下圖.
有聲書公司將付費高于元的用戶定義為“愛付費用戶”,將年齡在歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有的“年輕用戶”是“愛付費用戶”.
(1)完成下面的列聯(lián)表,并據(jù)此資料,能否有的把握認為用戶“愛付費”與其為“年輕用戶”有關(guān)?
愛付費用戶 | 不愛付費用戶 | 合計 | |
年輕用戶 | |||
非年輕用戶 | |||
合計 |
(2)若公司采用分層抽樣方法從“愛付費用戶”中隨機選取人,再從這人中隨機抽取人進行訪談,求抽取的人恰好都是“年輕用戶”的概率.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負整數(shù)組成的無窮數(shù)列,對每一個正整數(shù),該數(shù)列前項的最大值記為,第項之后各項的最小值記為,記.
(1)若數(shù)列的通項公式為,求數(shù)列的通項公式;
(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;
(3)若對任意恒成立,證明:數(shù)列的通項公式為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】談祥柏先生是我國著名的數(shù)學(xué)科普作家,他寫的《數(shù)學(xué)百草園》、《好玩的數(shù)學(xué)》、《故事中的數(shù)學(xué)》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數(shù)學(xué)》中談老的一篇文章《五分鐘內(nèi)挑出埃及分數(shù)》:文章首先告訴我們,古埃及人喜歡使用分子為1的分數(shù)(稱為埃及分數(shù)).如用兩個埃及分數(shù)與的和表示等.從這100個埃及分數(shù)中挑出不同的3個,使得它們的和為1,這三個分數(shù)是________.(按照從大到小的順序排列)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且.
(1)的通項公式為__________;
(2)在、、、、這項中,被除余的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代足球運動是世上開展得最廣泛、影響最大的運動項目,有人稱它為“世界第一運動”.早在2000多年前的春秋戰(zhàn)國時代,就有了一種球類游戲“蹴鞠”,后來經(jīng)過阿拉伯人傳到歐洲,發(fā)展成現(xiàn)代足球.1863年10月26日,英國人在倫敦成立了世界上第一個足球運動組織——英國足球協(xié)會,并統(tǒng)一了足球規(guī)則.人們稱這一天是現(xiàn)代足球的誕生日.如圖所示,足球表面是由若干黑色正五邊形和白色正六邊形皮圍成的,我們把這些正五邊形和正六邊形都稱為足球的面,任何相鄰兩個面的公共邊叫做足球的棱.已知足球表面中的正六邊形的面為20個,則該足球表面中的正五邊形的面為______個,該足球表面的棱為______條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)寫出的普通方程和的直角坐標方程;
(2)若與相交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請120名同學(xué)每人隨機寫下一個x,y都小于1的正實數(shù)對,再統(tǒng)計其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結(jié)果是,那么可以估計的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科站技術(shù)員為了解某品種樹苗的生長情況,在該批樹苗中隨機抽取一個容量為100的樣本,測量樹苗高度(單位:).經(jīng)統(tǒng)計,高度在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹苗為優(yōu)質(zhì)樹苗.
附:
,其中
(1)求頻率分布直方圖中的值;
(2)已知所抽取的這100棵樹苗來自于甲、乙兩個地區(qū),部分數(shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有%的把握認為優(yōu)質(zhì)樹苗與地區(qū)有關(guān)?
甲地區(qū) | 乙地區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 5 | ||
非優(yōu)質(zhì)樹苗 | 25 | ||
合計 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com