已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)不過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),且直線(xiàn)、的斜率依次成等比數(shù)列,求△面積的取值范圍.
(1) ;(2)△面積的取值范圍為 。

試題分析:(1)由已知得 ∴方程:  (4分)
(2)由題意可設(shè)直線(xiàn)的方程為: 
聯(lián)立 消去并整理,得:
則△ ,
此時(shí)設(shè)、
于是  (7分)
又直線(xiàn)、、的斜率依次成等比數(shù)列,
  
 得:  .又由△ 得:
顯然 (否則:,則中至少有一個(gè)為0,直線(xiàn)、 中至少有一個(gè)斜率不存在,矛盾。                     (10分)
設(shè)原點(diǎn)到直線(xiàn)的距離為,則

故由得取值范圍可得△面積的取值范圍為 (13分)
點(diǎn)評(píng):中檔題,曲線(xiàn)關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了橢圓的定義及幾何性質(zhì)。(2)作為研究點(diǎn)到直線(xiàn)的距離最值問(wèn)題,利用了函數(shù)思想。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線(xiàn)與雙曲線(xiàn)的右支交于不同的兩點(diǎn),那么的取值范圍是(  )
A.(B.(
C.(D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為
(Ⅰ)寫(xiě)出的方程;
(Ⅱ)設(shè)直線(xiàn)交于兩點(diǎn).k為何值時(shí)?此時(shí)的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果函數(shù)的圖像與曲線(xiàn)恰好有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與曲線(xiàn)的離心率互為倒數(shù),則(  )
A.16B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)O和點(diǎn)F(﹣2, 0)分別是雙曲線(xiàn)的中心和左焦點(diǎn),點(diǎn)P為雙曲線(xiàn)右支上的任意一點(diǎn),則的取值范圍為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

長(zhǎng)為3的線(xiàn)段的端點(diǎn)分別在軸上移動(dòng),動(dòng)點(diǎn)滿(mǎn)足,則動(dòng)點(diǎn)的軌跡方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓和雙曲線(xiàn)有公共的焦點(diǎn),那么雙曲線(xiàn)的漸近線(xiàn)方程是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程C:是常數(shù))則下列結(jié)論正確的是(  )
A.,方程C表示橢圓B.,方程C表示雙曲線(xiàn)
C.,方程C表示橢圓D.,方程C表示拋物線(xiàn)

查看答案和解析>>

同步練習(xí)冊(cè)答案