某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
API | |||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
|
| 非重度污染 | 重度污染 | 合計 |
供暖季 | | | |
非供暖季 | | | |
合計 | | | 100 |
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(13分)(2011•重慶)某市公租房的房源位于A、B、C三個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,求該市的任4位申請人中:
(Ⅰ)恰有2人申請A片區(qū)房源的概率;
(Ⅱ)申請的房源所在片區(qū)的個數(shù)的ξ分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某電視臺“挑戰(zhàn)60秒”活動規(guī)定上臺演唱:
(I)連續(xù)達到60秒可轉(zhuǎn)動轉(zhuǎn)盤(轉(zhuǎn)盤為八等分圓盤)一次進行抽獎,達到90秒可轉(zhuǎn)兩次,達到120秒可轉(zhuǎn)三次(獎金累加).
(2)轉(zhuǎn)盤指針落在I、II、III區(qū)依次為一等獎(500元)、二等獎(200元)、三等獎(100元),落在其它區(qū)域不獎勵.
(3)演唱時間從開始到三位評委中至少1人嗚啰為止,現(xiàn)有一演唱者演唱時間為100秒.
①求此人中一等獎的概率;
②設(shè)此人所得獎金為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某市教育局為了了解高三學生體育達標情況,在某學校的高三學生體育達標成績中隨機抽取100個進行調(diào)研,按成績分組:第l組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示:
若要在成績較高的第3,4,5組中用分層抽樣抽取6名學生進行復(fù)查:
(1)已知學生甲和學生乙的成績均在第四組,求學生甲和學生乙至少有一人被選中復(fù)查的概率;
(2)在已抽取到的6名學生中隨機抽取3名學生接受籃球項目的考核,設(shè)第三組中有三名學生接受籃球項目的考核,求暑的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某學校組織了一次安全知識競賽,現(xiàn)隨機抽取20名學生的測試成績,如下表所示(不低于90分的測試成績稱為“優(yōu)秀成績”):
79 | 90 | 82 | 80 | 84 | 95 | 79 | 86 | 89 | 91 |
97 | 86 | 79 | 78 | 86 | 77 | 87 | 89 | 83 | 85 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知5個乒乓球,其中3個新的,2個舊的,每次取1個,不放回的取兩次,
求:(1)第一次取到新球的概率.
(2)第二次取到新球的概率.
(3)在第一次取到新球的條件下第二次取到新球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某電器商經(jīng)過多年的經(jīng)驗發(fā)現(xiàn)本店每個月售出的電冰箱的臺數(shù)ξ是一個隨機變量,它的分布列為P(ξ=i)=(i=1,2,…,12);設(shè)每售出一臺電冰箱,電器商獲利300元.如銷售不出,則每臺每月需花保管費100元.問電器商每月初購進多少臺電冰箱才能使月平均收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某示范性高中的校長推薦甲、乙、丙三名學生參加某大學自主招生考核測試,在本次考核中只有合格和優(yōu)秀兩個等級.若考核為合格,授予10分降分資格;考核為優(yōu)秀, 授予20分降分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等級相互獨立.
(1)求在這次考核中,甲、乙、丙三名學生至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名學生所得降分之和為隨機變量ξ,求隨機變量ξ的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com