命題“如果x≤2mn,那么x≤m2+n2”的逆否命題是( 。
A、如果x>2mn,那么x≥m2+n2
B、如果x≥m2+n2,那么x≥2mn
C、如果x>m2+n2,那么x>2mn
D、如果x<2mn,那么x≤m2+n2
考點:四種命題
專題:簡易邏輯
分析:由“若p,則q”的逆否命題是“若¬q,則¬p”,直接寫出它的逆否命題即可.
解答: 解:根據(jù)互為逆否命題的定義,得;
命題“如果x≤2mn,那么x≤m2+n2”的逆否命題是
“如果x>m2+n2,那么x>2mn”.
故選:C.
點評:本題考查了四種命題之間的關(guān)系,解題時應(yīng)根據(jù)互為逆否命題的定義,寫出它的逆否命題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(x-
2
x
6的展開式中x3的系數(shù)為a,二項式系數(shù)為b,則
a
b
的值為( 。
A、
15
16
B、
15
4
C、16
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(2,0)且與直線x-2y-1=0平行的直線方程是(  )
A、x-2y-2=0
B、x-2y+2=0
C、2x-y-4=0
D、x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高二年級有文科學(xué)生500人,理科學(xué)生1500人,為了解學(xué)生對數(shù)學(xué)的喜歡程度,現(xiàn)用分層抽樣的方法從該年級抽取一個容量為60的樣本,則樣本中文科生有( 。┤耍
A、10B、15C、20D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β為不重合的平面,m,n為不重合的直線,則下列命題正確的是( 。
A、若α⊥β,α∩β=n,m⊥n,則m⊥α
B、若m?α,n?β,m⊥n,則n⊥α
C、若n⊥α,n⊥β,m⊥β,則m⊥α
D、若m∥α,n∥β,m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運算
.
ac
bd
.
=ad-bc,則
.
i2
1i
.
(i是虛數(shù)單位)為( 。
A、3
B、-3
C、i2-1
D、i2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面四個結(jié)論
①命題“對?x∈R,都有x2≥0”的否定為“?x0∈R,使得x02<0”;
②函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點的充要條件;
③如果命題“¬(p∧q)”是真命題,則命題p、q中至多有一個是真命題;
④甲、乙兩位學(xué)生參與數(shù)學(xué)考試,已知命題p:“甲考試及格”,q:“乙考試及格”,則命題“至少有一個學(xué)生不及格”可表示為(¬p)∧(¬q).
其中正確結(jié)論的是(  )
A、①③B、②③
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x+
π
6
),x∈R.
(1)求f(x)的最小正周期;
(2)若f(α+
π
6
)=-
9
5
,且α是第一象限角,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線L1:x+y-1=0,L2:2x-y+4=0的交點為P,動直線L:ax-y-2a+1=0.
(1)若直線L過點P,求實數(shù)a的值.
(2)若直線L與直線L1垂直,求三條直線L,L1,L2 圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案