【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn),的距離之比為定值的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱(chēng)為阿波羅尼斯圓,簡(jiǎn)稱(chēng)阿氏圓.在平面直角坐標(biāo)系中,,,點(diǎn)滿(mǎn)足.設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是( )
A.的方程為
B.在上存在點(diǎn),使得
C.當(dāng),,三點(diǎn)不共線(xiàn)時(shí),射線(xiàn)是的平分線(xiàn)
D.在三棱錐中,面,且,,,該三棱錐體積最大值為12
【答案】ACD
【解析】
A.代入坐標(biāo)表示出線(xiàn)段長(zhǎng)度,根據(jù)線(xiàn)段長(zhǎng)度比值得到的方程;
B.根據(jù)長(zhǎng)度關(guān)系列出方程,并判斷方程是否有解;
C.利用已知條件,以及的比值,根據(jù)角平分線(xiàn)定理的逆定理作出判斷;
D.結(jié)合題設(shè)定義建立合適坐標(biāo)系,可得的軌跡是圓,據(jù)此分析出三棱錐底面積最大值,由此可得三棱錐體積的最大值.
A.設(shè),因?yàn)?/span>,所以,所以,
所以,故正確;
B.設(shè)存在滿(mǎn)足,因?yàn)?/span>,所以,
所以,所以,
又因?yàn)?/span>,所以,又因?yàn)?/span>不滿(mǎn)足,
所以不存在滿(mǎn)足條件,故錯(cuò)誤;
C.當(dāng),,三點(diǎn)不共線(xiàn)時(shí),因?yàn)?/span>,,
所以,所以,由角平分線(xiàn)定理的逆定理可知:射線(xiàn)是的平分線(xiàn),故正確;
D.因?yàn)槿忮F的高為,所以當(dāng)?shù)酌?/span>的面積最大值時(shí),此時(shí)三棱錐的體積最大,
因?yàn)?/span>,,取靠近的一個(gè)三等分點(diǎn)為坐標(biāo)原點(diǎn),為軸建立平面直角坐標(biāo)系,
所以不妨取,,由題設(shè)定義可知的軌跡方程為:,
所以,此時(shí)在圓的最高點(diǎn)處,
所以,故正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:在左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),若是面積為的等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知,是橢圓上的兩點(diǎn),且,求使的面積最大時(shí)直線(xiàn)的方程(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線(xiàn)與平面所成角的正弦值;
(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面ABCD是邊長(zhǎng)為6的菱形,且,平面ABCD,,F是棱PA上的一個(gè)動(dòng)點(diǎn),E為PD的中點(diǎn).
Ⅰ求證:.
Ⅱ若.
求PC與平面BDF所成角的正弦值;
側(cè)面PAD內(nèi)是否存在過(guò)點(diǎn)E的一條直線(xiàn),使得該直線(xiàn)上任一點(diǎn)M與C的連線(xiàn),都滿(mǎn)足平面BDF,若存在,求出此直線(xiàn)被直線(xiàn)PA、PD所截線(xiàn)段的長(zhǎng)度,若不存在,請(qǐng)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定數(shù)列,若滿(mǎn)足且,對(duì)于任意的n,,都有,則稱(chēng)數(shù)列為“指數(shù)型數(shù)列”.
Ⅰ已知數(shù)列,的通項(xiàng)公式分別為,,試判斷,是不是“指數(shù)型數(shù)列”;
Ⅱ若數(shù)列滿(mǎn)足:,,判斷數(shù)列是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說(shuō)明理由;
Ⅲ若數(shù)列是“指數(shù)型數(shù)列”,且,證明:數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E是CD的中點(diǎn),將△ADE沿AE折起,得到如圖2所示的四棱錐D1—ABCE,其中平面D1AE⊥平面ABCE.
(1)證明:BE⊥平面D1AE;
(2)設(shè)F為CD1的中點(diǎn),在線(xiàn)段AB上是否存在一點(diǎn)M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合 為集合U的n個(gè)非空子集,這n個(gè)集合滿(mǎn)足:①?gòu)闹腥稳?/span>m個(gè)集合都有 成立;②從中任取個(gè)集合都有 成立.
(Ⅰ)若, , ,寫(xiě)出滿(mǎn)足題意的一組集合;
(Ⅱ)若, ,寫(xiě)出滿(mǎn)足題意的一組集合以及集合;
(Ⅲ) 若, ,求集合中的元素個(gè)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+2x﹣2y+1=0和拋物線(xiàn)E:y2=2px(p>0),圓C與拋物線(xiàn)E的準(zhǔn)線(xiàn)交于M、N兩點(diǎn),△MNF的面積為p,其中F是E的焦點(diǎn).
(1)求拋物線(xiàn)E的方程;
(2)不過(guò)原點(diǎn)O的動(dòng)直線(xiàn)l交該拋物線(xiàn)于A,B兩點(diǎn),且滿(mǎn)足OA⊥OB,設(shè)點(diǎn)Q為圓C上任意一動(dòng)點(diǎn),求當(dāng)動(dòng)點(diǎn)Q到直線(xiàn)l的距離最大時(shí)直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校隨機(jī)抽取部分男生測(cè)試立定跳遠(yuǎn),將成績(jī)整理得到頻率分布表如表,測(cè)試成績(jī)?cè)?/span>220厘米以上(含220厘米)的男生定為“合格生”,成績(jī)?cè)?/span>260厘米以上(含260厘米)的男生定為“優(yōu)良生”.
分組(厘米) | 頻數(shù) | 頻率 |
[180,200) | 0.10 | |
[200,220) | 15 | |
[220,240) | 0.30 | |
[240,260) | 0.30 | |
[260,280) | 0.20 | |
合計(jì) | 1.00 |
(1)求參加測(cè)試的男生中“合格生”的人數(shù).
(2)從參加測(cè)試的“合格生”中,根據(jù)表中分組情況,按分層抽樣的方法抽取8名男生,再?gòu)倪@8名男生中抽取3名男生,記X表示3人中“優(yōu)良生”的人數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com